maximum luminance efficiency: 0.56 cd/A). Current results
indicate that the copolyfluorenes containing bipolar moieties are
promising additives in greatly improving device performance of
MEH-PPV and other conjugated polymers.
Acknowledgements
We thank the National Science Council of the Republic of China
for financial aid through project NSC 98-2221-E-006-002-MY3.
References
1 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature,
1990, 347, 539.
2 (a) G. Grem, G. Leditzky, B. Ullrich and G. Leising, Adv. Mater.,
1992, 4, 36; (b) Q. Pei and Y. Yang, J. Am. Chem. Soc., 1996, 118,
7416; (c) M. R. Andersson, O. Thomas, W. Mammo, M. Svensson,
Fig. 11 Emission spectra of PLEDs using blends of MEH-PPV and P1–
P3 as emitting layer. Device configuration: ITO/PEDOT:PSS/MEH-PPV
+ P1, P2 or P3 (90–110 nm)/Ca(50 nm)/Al(100 nm).
€
M. Theander and O. Inganas, J. Mater. Chem., 1999, 9, 1933.
3 (a) M. Aguiar, F. E. Karasz and L. Akcelrud, Macromolecules, 1995,
28, 4598; (b) E. S. Kolb, R. A. Gaudiana and P. G. Mehta,
Macromolecules, 1996, 29, 2359; (c) A. Kraft, A. C. Grimsdale and
A. B. Holmes, Angew. Chem., Int. Ed., 1998, 37, 402.
4 (a) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes,
R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos,
demonstrated higher surface roughness before and after the
thermal annealing (1.01 nm / 1.46 nm) than MEH-PPV (0.93
nm / 1.21 nm).
ꢀ
€
J. L. Bredas and M. Logdlund, Nature, 1999, 397, 121; (b)
M. T. Bernius, M. Inbasekaran, J. O’Brien and W. Wu, Adv.
Mater., 2000, 12, 1737; (c) L. Akcelrud, Prog. Polym. Sci., 2003, 28,
875.
However, at low P3 content (MEH-PPV/P3 ¼ 95/5) the device
performance is effectively enhanced. As shown in Fig. 11, the
electroluminescent emission of all devices is exclusively origi-
nated from MEH-PPV, with full width at half-maxima (fwhm)
being ca. 80 nm. The 1931 CIE coordinates (x, y) of the EL
emission only shift slightly from (0.54, 0.46) of MEH-PPV-based
device to (0.52, 0.48) of blend devices (MEH-PPV/P3 ¼ 97.5/2.5,
MEH-PPV/P3 ¼ 95/5). Furthermore, the excimer emission of
MEH-PPV at ca. 625 nm is also diminished due probably to
reduced aggregation after blending with the copolyfluorenes.
Therefore, slight amount of copolyfluorenes P1–P3 containing
bipolar groups (M1 residues) is effective in enhancing device
performance of the conventional MEH-PPV.
5 (a) T. Takiguchi, D. H. Park, H. Ueno, K. Yoshino and R. Sugimoto,
Synth. Met., 1987, 17, 657; (b) D. Braun and A. J. Heeger, Appl. Phys.
Lett., 1991, 58, 1982.
6 (a) A. Kraft, P. L. Burn, A. B. Holmes, D. D. C. Bradley, R. H. Friend
and J. H. F. Martens, Synth. Met., 1993, 57, 4163; (b) H. Antomiadis,
M. A. Abkowitz and B. R. Hsieh, Appl. Phys. Lett., 1994, 65, 2030.
€
7 (a) H. Meyer, D. Haarer, H. Naarmann and H. H. Horhold, Phys.
Rev. B: Condens. Matter, 1995, 52, 2587; (b) P. W. M. Blom,
M. J. M. de John and J. J. M. Vleggaar, Appl. Phys. Lett., 1996, 68,
3308.
8 (a) Y. Yang, Q. Pei and A. J. Heeger, J. Appl. Phys., 1996, 79, 934; (b)
Y. Z. Wang, D. D. Gebler, D. J. Spry, D. K. Fu, T. M. Swager,
A. G. MacDiarmid and A. J. Epstein, IEEE Trans. Electron
Devices, 1997, 44, 1263.
9 (a) X.-C. Li, A. C. Grimsdale, R. Cervini, A. B. Holmes,
€
S. C. Moratti, T. M. Yong, J. Gruner and R. H. Friend, ACS
Conclusions
Symp. Ser., 1997, 672, 322; (b) H. Meng, W. L. Yu and W. Huang,
Macromolecules, 1999, 32, 8841; (c) H. C. F. Martens,
J. N. Huiberts and P. W. M. Blom, Appl. Phys. Lett., 2000, 77, 1852.
10 C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett., 1989, 55, 1489.
11 (a) A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend,
N. C. Greenham, P. L. Burn, A. B. Holmes and A. Kraft, Appl.
Phys. Lett., 1992, 61, 2793; (b) N. C. Greenham, S. C. Moratti,
D. D. C. Bradley, R. H. Friend and A. B. Holmes, Nature, 1993,
365, 628.
12 (a) I. D. Parker, Q. Pei and M. Marrocco, Appl. Phys. Lett., 1994, 65,
1272; (b) S. Son, A. Dodabalapur, A. J. Lovinger and M. E. Galvin,
Science, 1995, 269, 376.
13 M. Strukelj, F. Papadimitrakopoulos, T. M. Miller and
L. J. Rothberg, Science, 1995, 267, 1969.
We have successfully synthesized copolyfluorenes (P1–P3) con-
taining pendant bipolar groups (M1 residues: 2.1, 3.3 and 8.2
mol%). The copolyfluorenes were soluble in common organic
solvents and thermally stablꢀe (thermal decomposition tempera-
ture at 5 wt% loss: 422–439 C). The PL spectra of P1–P3 were
€
identical to that of PF, due to efficient Forster energy transfer.
Estimated LUMO and HOMO levels of model M0 were ꢁ5.3 eV
and ꢁ2.77 eV, which are mainly attributed to LUMO levels of
TAZ and HOMO levels of TPA, respectively. The HOMO levels
of PF and P1–P3 were raised gradually from ꢁ5.63 eV to ꢁ5.52
eV with increasing bipolar residues (from 0 to 8.2 mol%), while
their LUMO levels lowered slightly from ꢁ2.59 eV to ꢁ2.66 eV.
Blending bipolar M0 with MEH-PPV enhanced the device effi-
ciency (maximum luminance: 6830 cd/m2, maximum luminance
efficiency: 0.50 cd/A). Furthermore, blending the copoly-
fluorenes with MEH-PPV resulted in further significant perfor-
mance enhancement due to improved carriers injection and
transport. P3-based blend device (MEH-PPV/P3 ¼ 95/5) showed
the best performance (maximum luminance: 11090 cd/m2,
14 Z. Peng, Z. Bao and M. E. Galvin, Chem. Mater., 1998, 10, 2086.
15 X. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou,
X. M. Zhang, X. Q. He and S. T. Lee, Adv. Mater., 2000, 12, 265.
16 E. S. Kolb, R. A. Gaudiana and P. G. Mehta, Macromolecules, 1996,
29, 2359.
€
17 M. Greczmiel, P. Strohriegl, M. Meier and W. Brutting,
Macromolecules, 1997, 30, 6042.
18 (a) S. Liu, X. Jiang, H. Ma, M. S. Liu and K.-Y. Jen, Macromolecules,
2000, 33, 3514; (b) J. L. Kim, J. K. Kim, H. N. Cho, D. Y. Kim,
C. Y. Kim and S. Hong, Macromolecules, 2000, 33, 5880; (c)
B.-J. Jung, J.-I. Lee, H. Y. Chu, L.-M. Do and H.-K. Shim,
Macromolecules, 2002, 35, 2282.
7708 | J. Mater. Chem., 2010, 20, 7700–7709
This journal is ª The Royal Society of Chemistry 2010