C O M M U N I C A T I O N S
di(2-naphthyl)disilene framework; the Si-Si-C-C torsion angles
are 2.25(14)° for 3a and 9.57(11)° for 3c, respectively. The SidSi
bond distances of 2.1623(18) Å for 3a and 2.1667(12) Å for 3c
are in the range of those for typical disilenes.2 Similar rotational
isomers have also been found in the crystal of 4.11
appreciable contribution of the 3pπ*(Si-Si)-2pπ*(naphthyl) conjuga-
tion. Thus, while the HOMO levels of 3a-c (-4.249, -4.286, and
-4.304 eV) are comparable to that of 1 (-4.253 eV), the LUMO levels
of 3a-c (-1.554, -1.488, and -1.478 eV) are lower than that of 1
(-1.330 eV), which are in good agreement with the electrochemical
experimental results already mentioned.
Table 1. Photophysical Data of Disilenes 1-4
The outstanding stability15 of 3 and 4 would provide opportuni-
ties for future electronic and optoelectronic applications. Further
investigations are now in progress.
λ
max(abs)/
nm
Stokes shift/
cm-1
compounda
ꢀ/cm-1 M-1
λ
max(em)/nm (ΦF)
1
2
3
hexane
hexane
THF
solid
THF
solid
461
543
504
2.4 × 104
3.0 × 104
2.5 × 104
3.0 × 104
n.d.b
Acknowledgment. We thank the Ministry of Education, Culture,
Sports, Science, and Technology of Japan for the Grant-in-Aid for
Specially Promoted Research (No. 19002008). We also thank Dr.
Yayoi Hongo, Mr. Takashi Nakamura, Dr. Masayoshi Nishiura,
and Dr. Zhaomin Hou (RIKEN) for their kind help with the mass
spectrometry, solid-state NMR spectroscopy, and thermal analysis.
The numerical calculations were partly performed at the Super-
computer Laboratory, Institute for Chemical Research, Kyoto
University.
612 (0.10)
586 (0.01)
619 (0.23)
575 (0.01)
600 (0.20)
2080
2780
4
510
2200
a Solution or solid. b Not detected.
Some photophysical and electrochemical features are found as
follows: (1) The UV-vis spectrum of 3 in THF shows an absorption
maximum at 504 nm (ꢀ ) 2.5 × 104), which is 43 nm red-shifted
from that of 1 (λmax ) 461 nm),8 indicating the π-conjugation
extension over the di(2-naphthyl)disilene skeleton (Table 1). The
absorption peak of 4 appears at 510 nm with a higher molar
extinction (ꢀ ) 3.0 × 104). (2) The disilenes 3 and 4 exhibit a
weak but distinct fluorescence at room temperature in THF, thus
in contrast to the fact that the diphenyldisilene 1 does not show
any fluorescence in solution. The emission maxima are found at
586 nm for 3 and 575 nm for 4. The Stokes shifts are calculated to
be 2780 cm-1 for 3 and 2220 cm-1 for 4, which are comparable to
that of 2 (2080 cm-1)8 but much lower than those observed for
Supporting Information Available: Experimental details, CIF for
3 and 4, DFT calculations, and full listing for ref 14. This material is
References
(1) (a) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343. (b) Brook,
A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R. L. J. Chem.
Soc., Chem. Commun. 1981, 191. (c) Yoshifuji, M.; Shima, I.; Inamoto,
N. J. Am. Chem. Soc. 1981, 103, 4587.
(2) For reviews, see: (a) Okazaki, R.; West, R. AdV. Organomet. Chem. 1996,
39, 231. (b) Power, P. P. Chem. ReV. 1999, 99, 3463. (c) Lee, V. Y.;
Sekiguchi, A. Organometallics 2004, 23, 2822. (d) Kira, M.; Iwamoto, T.
AdV. Organomet. Chem. 2006, 54, 73. (e) Wang, Y.; Robinson, G. H. Chem.
Commun. 2009, 5201.
tetramesityldisilene and tetraneopentyldisilene, 4000 and 7300 cm-1
,
(3) For recent examples, see: (a) Weidenbruch, M.; Willms, S.; Saak, W.;
Henkel, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2503. (b) Iwamoto, T.;
Tamura, M.; Kabuto, C.; Kira, M. Science 2000, 290, 504. (c) Ishida, S.;
Iwamoto, T.; Kabuto, C.; Kira, M. Nature 2003, 421, 725. (d) Kinjo, R.;
Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Sumitomo, M.; Nagase, S. J. Am.
Chem. Soc. 2007, 129, 7766. (e) Sasamori, T.; Yuasa, A.; Hosoi, Y.;
Furukawa, Y.; Tokitoh, N. Organometallics 2008, 27, 3325. (f) Abersfelder,
K.; White, A. J. P.; Rzepa, H. S.; Scheschkewitz, D. Science 2010, 327,
564. (j) Sato, T.; Mizuhata, Y.; Tokitoh, N. Chem. Commun. 2010, 46,
4402.
respectively,12 indicative of the structural rigidity of our compounds.
(3) The disilenes exhibit strong emissions in the solid state, as shown
in Figure 2. The quantum yields (ΦF) are 0.23 for 3 and 0.20 for
4, respectively, 20 times stronger than those in solution. The weaker
fluorescence in solution may be ascribed to the free rotation of each
aromatic group around the Si-C bond as observed by the 1H NMR
spectra.11 (4) While the irreversible oxidation waves were observed
at +0.07 V for 3 and +0.02 V for 4 by cyclic voltammetry,13
comparable to that of 1 (+0.06 V), the quasi-reversible reduction
waves are observed at -2.50 V for 3 and -2.59 V for 4, whose
values are lower than that of 1 (-2.66 V).
(4) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P.
v. R.; Robinson, G. H. Science 2008, 321, 1069.
(5) For reviews, see: (a) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Organomet.
Chem. 2002, 652, 3. (b) Yamaguchi, S.; Tamao, K. Chem. Lett. 2005, 34,
2. (c) Matsuo, T.,; Kobayashi, M.; Tamao, K. Dalton Trans. 2010, 39,
9203.
(6) Li, B.; Matsuo, T.; Hashizume, D.; Fueno, H.; Tanaka, K.; Tamao, K. J. Am.
Chem. Soc. 2009, 131, 13222.
(7) Bejan, I.; Scheschkewitz, D. Angew, Chem., Int. Ed. 2007, 46, 5783.
(8) Fukazawa, A.; Li, Y.; Yamaguchi, S.; Tsuji, H.; Tamao, K. J. Am. Chem.
Soc. 2007, 129, 14164.
(9) The intramolecular charge-transfer transition of the 9-anthryldisilene has
been reported, in which the anthryl group is orthogonal to the SidSi bond;
see: Iwamoto, T.; Kobayashi, M.; Uchiyama, K.; Sasaki, S.; Nagendran,
S.; Isobe, H.; Kira, M. J. Am. Chem. Soc. 2009, 131, 3156.
(10) Watanabe, H.; Takeuchi, K.; Fukawa, N.; Kato, M.; Goto, M.; Nagai, Y.
Chem. Lett. 1987, 16, 1341.
(11) See Supporting Information for details.
(12) (a) West, R. Pure Appl. Chem. 1984, 56, 163. (b) Shizuka, H.; Tanaka, H.;
Okazaki, K.; Kato, M.; Watanabe, H.; Nagai, Y.; Ishikawa, M. J. Chem.
Soc., Chem. Commun. 1986, 748.
Figure 2. Photographs of 3 and 4 in air.
DFT calculations were performed for 3a-c at the B3LYP/6-
31G(d,p) level using the Gaussian 03 suite of programs.14 The
optimized structures of 3a and 3c reproduced the X-ray molecular
structures. The missing isomer 3b is also found to be a local minimum
with a coplanar di(2-naphthyl)disilene skeleton.11 These isomers have
nearly the same energies; the relative energies are 0.00 (3c), 0.72 (3b),
and 1.70 (3a) kcal mol-1. Whereas the HOMOs are essentially
represented by the 3pπ(Si-Si) orbital, the LUMOs involve the
(13) (a) Shepherd, B. D.; West, R. Chem. Lett. 1988, 17, 183. (b) Kira, M.;
Ishima, T.; Iwamoto, T.; Ichinohe, M. J. Am. Chem. Soc. 2001, 123, 1676.
(c) Scha¨fer, A.; Weidenbruch, M.; Mu¨ller, T.; Pravinkumar, K.; Becker,
J. Y. Chem.sEur. J. 2009, 15, 8424.
(14) Frisch, M. J. Gaussian 03, revision E.01; Gaussian Inc.: Wallingford, CT,
2004.
(15) These disilenes have a high thermal stability with the decomposition points
of >280 °C under an argon atmosphere in a sealed tube. The temperatures
at 5% weight loss (Td5) are 356 °C for 3 and 308 °C for 4, respectively.
JA108094M
9
J. AM. CHEM. SOC. VOL. 132, NO. 43, 2010 15163