Beilstein J. Org. Chem. 2010, 6, No. 57.
25.Huang, S.; Tour, J. M. Tetrahedron Lett. 1999, 40, 3347–3350.
51.Rodríguez, J. G.; Tejedor, J. L. J. Org. Chem. 2002, 67, 7631–7640.
26.Zhang, J.; Pesak, D. J.; Ludwick, J. L.; Moore, J. S. J. Am. Chem. Soc.
27.Jones, L., II; Schumm, J. S.; Tour, J. M. J. Org. Chem. 1997, 62,
52.Kaneko, T.; Horie, T.; Matsumoto, S.; Teraguchi, M.; Aoki, T.
Macromol. Chem. Phys. 2009, 210, 22–36.
53.Takayama, Y.; Delas, C.; Muraoka, K.; Uemura, M.; Sato, F.
54.López, S.; Fernández-Trillo, F.; Midón, P.; Castedo, L.; Saá, C.
55.Silicon based alkyne protecting groups with a cyano group as the polar
28.Li, G.; Wang, X.; Wang, F. Tetrahedron Lett. 2005, 46, 8971–8973.
29.Hortholary, C.; Coudret, C. J. Org. Chem. 2003, 68, 2167–2174.
30.The use of the triflate group for the alkynyl–aryl coupling and its
masking as the precursory OH group offers an alternative that was
applied to the synthesis of phenyleneethynylene dendrimers [31],
however, not (yet) to the synthesis of oligoPPEs.
31.Pan, Y.; Peng, Z.; Melinger, J. S. Tetrahedron 2003, 59, 5495–5506.
56.Höger, S.; Bonrad, K. J. Org. Chem. 2000, 65, 2243–2245.
57.Gaefke, G.; Höger, S. Synthesis 2008, 2155–2157.
58.Keller, J. M.; Schanze, K. S. Organometallics 2009, 28, 4210–4216.
32.Kukula, H.; Veit, S.; Godt, A. Eur. J. Org. Chem. 1999, 277–286.
59.Weibel, N.; Mishchenko, A.; Wandlowski, T.; Neuburger, M.;
Leroux, Y.; Mayor, M. Eur. J. Org. Chem. 2009, 6140–6150.
33.Wang, C.; Batsanov, A. S.; Bryce, M. R. J. Org. Chem. 2006, 71,
60.Bumagin, N. A.; Ponomaryov, A. B.; Beletskaya, I. P. Synthesis 1984,
34.Chandra, K. L.; Zhang, S.; Gorman, C. B. Tetrahedron 2007, 63,
61.Atkinson, R. E.; Curtis, R. F.; Jones, D. M.; Taylor, J. A.
The suggestion to use the HOM group as a protecting group that can
be removed via oxidation–decarbonylation was made much earlier
here.
35.We like to call attention to the recent reports that trimethylsilyl and HOP
are orthogonal alkyne protecting groups which make HOP a very
interesting protecting group [36,37]. The same is true for
tert-butyldimethylsilyl and HOP [38].
36.Goeb, S.; De Nicola, A.; Ziessel, R. J. Org. Chem. 2005, 70,
62.The largely different reaction times given in the experimental part of
[48] probably indicate that the experimenters of that reference
experienced the same difficulties.
37.Rodríguez, J. G.; Esquivias, J.; Lafuente, A.; Díaz, C. J. Org. Chem.
63.Burke, S. D.; Danheiser, R. L., Eds. Handbook of Reagents for Organic
Synthesis, Oxidizing and Reducing Agents; Wiley: Chichester, U.K.,
2004; p 232.
38.Shimizu, H.; Fujimoto, K.; Furusyo, M.; Maeda, H.; Nanai, Y.;
Mizuno, K.; Inouye, M. J. Org. Chem. 2007, 72, 1530–1533.
65.For the preparation of highly activated MnO2 we followed the
procedure given in [63]. In this procedure less MnCl2 • 4 H2O (200 g
vs. 220 g) but the same amount of KMnO4 (160 g) and of solvent was
used in comparison to the procedure given in [64].
39.Ziener, U.; Godt, A. J. Org. Chem. 1997, 62, 6137–6143.
40.Acharya, J. R.; Zhang, H.; Li, X.; Nesterov, E. E. J. Am. Chem. Soc.
41.Hsung, R. P.; Chidsey, C. E. D.; Sita, L. R. Organometallics 1995, 14,
66.As purchased; 80% technical grade.
68.Firouzabadi, H.; Ghaderi, E. Tetrahedron Lett. 1978, 19, 839–840.
42.Ley, K. D.; Li, Y.; Johnson, J. V.; Powell, D. H.; Schanze, K. S.
43.Li, G.; Wang, X.; Li, J.; Zhao, X.; Wang, F. Tetrahedron 2006, 62,
69.Experimental proof: Carbometalation product 5a was treated with
γ-MnO2 and powdered KOH in diethylether at room temperature. The
1H NMR spectrum of the crude product shows unambigously the
signals of the expected aldehyde 6a. There are no signals that fit to the
characteristic signals of the unsymmetrically 1,1-disubstituted alkene 7,
the product in case 6a had lost the formyl group.
44.Pearson, D. L.; Tour, J. M. J. Org. Chem. 1997, 62, 1376–1387.
45.Zeng, X.; Wang, C.; Bryce, M. R.; Batsanov, A. S.;
Sirichantaropass, S.; García-Suárez, V. M.; Lambert, C. J.; Sage, I.
46.Maag, D.; Kottke, T.; Schulte, M.; Godt, A. J. Org. Chem. 2009, 74,
The two sets of 1H NMR signals in an intensity ratio of 22:1 for the aryl
protons, the aldehyde proton, and the vinyl proton indicate a mixture of
E- and Z-alkene. Alkene isomerization upon oxidation with MnO2 has
been reported [70]. The alkene isomerization can also be explained by
a reversible addition of hydroxide to the electron acceptor substituted
alkene of aldehyde 6a. Characteristic signals of the major isomer: δ =
9.38 (d, J = 8.2 Hz, 1 H, CHO), 7.32 and 7.00 (2 s, 1 H each, ArH),
6.47 (d, J = 8.2 Hz, 1 H, C=CH); Characteristic signals of the minor
isomer: δ = 10.28 (d, J = 8.2 Hz, 1 H, CHO), 7.30 and 7.09 (2 s, 1 H
each, ArH), 6.31 (d, J = 8.2 Hz, 1 H, C=CH).
47.Yang, J.; Ng, M.-K. Synthesis 2006, 3075–3079.
48.Robinson, J. M. A.; Kariuki, B. M.; Harris, K. D. M.; Philp, D.
J. Chem. Soc., Perkin Trans. 2 1998, 2459–2469.
49.Harriman, A.; Mallon, L.; Ziessel, R. Chem.–Eur. J. 2008, 14,
50.Zhao, Z.; Yu, S.; Xu, L.; Wang, H.; Lu, P. Tetrahedron 2007, 63,
Page 8 of 9
(page number not for citation purposes)