ORGANIC
LETTERS
2010
Vol. 12, No. 22
5174-5177
Intramolecular Hydroamination of
Dithioketene Acetals: An Easy Route To
Cyclic Amino Acid Derivatives
Hai-Chao Xu and Kevin D. Moeller*
Department of Chemistry, Washington UniVersity, St. Louis,
Missouri 63130, United States
Received September 13, 2010
ABSTRACT
Catalytic intramolecular hydroamination of dithioketene acetals was developed for the synthesis of cyclic amino acid derivatives. Triggered
by the addition of a catalytical amount of n-BuLi, the reaction proceeds to give proline and pipecolic acid derivatives in excellent yields and
diastereoselectivity.
Recently, we reported that the anodic coupling1 of a
dithioketene acetal and an amine provided an efficient route
to cyclic amino acid derivatives2-6 containing a tetrasub-
Scheme 1
.
Anodic Cyclizations to Form Cyclic Amino Acid
Derivatives
(1) For a recent account of anodic olefin coupling reactions, see: Moeller,
K. D. Synlett 2009, 1208. For a more general review of anodic electro-
chemistry, see: Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem.
ReV. 2009, 108, 2265.
(2) For reviews of cyclic amino acid derivatives, see: (a) Park, K. -H.;
Kurth, M. J. Tetrahedron 2002, 58, 8629. (b) Cativiela, C.; Diaz-de-Villegas,
M. D. Tetrahedron: Asymmetry 2000, 11, 645
.
(3) For recent references, see: (a) Mitsunaga, S.; Ohbayashi, T.;
Sugiyama, S.; Saitou, T.; Tadokoro, M.; Satoh, T. Tetrahedron: Asymmetry
2009, 20, 1697. (b) Wang, Y.-G.; Mi, H.; Kano, T.; Maruoka, K. Bioorg.
Med. Chem. Lett. 2009, 19, 3795. (c) Kaname, M.; Yamada, M.; Yoshifuji,
S.; Sashida, H. Chem. Pharm. Bull. 2009, 57, 49. (d) Dickstein, J. S.; Fennie,
M. W.; Norman, A. L.; Paulose, B. J.; Kozlowski, M. C. J. Am. Chem.
Soc. 2008, 130, 15794. (e) Prazeres, V. F. V.; Castedo, L.; Gonzalez-Bello,
C. Eur. J. Org. Chem. 2008, 23, 3991. (f) Simila, S. T. M.; Martin, S. F.
Tetrahedron Lett. 2008, 49, 4501. (g) Undheim, K. Amino Acids 2008, 34,
stituted R carbon atom (Scheme 1).7,8 The reactions are
intriguing because they utilize the cyclization to lower the
(5) For synthetic routes to peptidomimetics containing cyclic amino acid
derivatives: (a) Scott, W. L.; Alsina, J.; Kennedy, J. H.; O’Donnell, M. J.
Org. Lett. 2004, 6, 1629. (b) Palomo, C.; Aizpurua, J. M.; Benito, A.;
Miranda, J. I.; Fratila, R. M.; Matute, C.; Domercq, M.; Gago, F.; Martin-
Santamaria, S.; Linden, A. J. Am. Chem. Soc. 2003, 125, 16243. (c)
Colombo, L.; Di Giacomo, M.; Vinci, V.; Colombo, M.; Manzoni, L.;
Scolastico, C. Tetrahedron 2003, 59, 4501. (d) Dolbeare, K.; Pontoriero,
G. F.; Gupta, S. K.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 2003, 46,
727. (e) Khalil, E. M.; Pradhan, A.; Ojala, W. H.; Gleason, W. B.; Mishra,
R. K.; Johnson, R. L. J. Med. Chem. 1999, 42, 2977. (f) Aube, J. AdV.
Amino Acid Mimetics and Peptidomimetics 1997, 1, 193. (g) Tong, Y.;
Olczak, J.; Zabrocki, J.; Gershengorn, M. C.; Marshall, G. R.; Moeller,
K. D. Tetrahedron 2000, 56, 9791. (h) Duan, S.; Moeller, K. D. Tetrahedron
2001, 57, 6407. (i) Liu, B.; Brandt, J. D.; Moeller, K. D. Tetrahedron 2003,
357, and references therein
.
(4) For leading references concerning the use of lactam-based peptido-
mimetics containing cyclic amino acid derivatives, see: (a) Cluzeau, J.;
Lubell, W. D. Biopolymers 2005, 80, 98. (b) I-lalab, L.; Gosselin, F.; Lubell,
W. D. Biopolymers 2000, 55, 101. (c) Hanessian, S.; McNaughton-Smith,
G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789. For
additional lead references, see: (d) Polyak, F.; Lubell, W. D. J. Org. Chem.
1998, 63, 5937. (e) Curran, T. P.; Marcaurell, L. A.; O’Sullivan, K. M.
Org. Lett. 1999, 1, 1225. (f) Gosselin, F.; Lubell, W. D. J. Org. Chem.
2000, 65, 2163. (g) Polyak, F.; Lubell, W. D. J. Org. Chem. 2001, 66,
1171. (h) Feng, Z.; Lubell, W. D. J. Org. Chem. 2001, 66, 1181
.
59, 8515.
10.1021/ol102193x 2010 American Chemical Society
Published on Web 10/14/2010