1949
D. F. Shellhamer et al.
Paper
Synthesis
2-(2,6-Dichlorophenyl)-4-oxoazetidine-1-sulfonyl Chloride
1H NMR (500 MHz, CDCl3): δ = [3.98 and 3.97 (t, J = 7.5 Hz, 1 H], 3.10
(m, 1 H), 2.16–2.24 (m, 1 H), 1.76–1.95 (m, 3 H), 1.10 (t, J = 7.5 Hz, 3
H), 1.05 (t, J = 7.5 Hz, 3 H).
Prepared by the typical procedure from 2,6-dichlorostyrene (3) (sol-
vent: CD3NO2; reaction time: 7 d; temp: 50 °C) as white crystals;
yield: 565 mg (1.79 mmol, 30%); mp 107–108 °C.
13C NMR (125 MHz, CDCl3): δ = 164.9, 64.5, 57.5, 25.5, 21.4, 11.2, 9.1.
IR (ATR): 1824 cm–1
.
2,2,3-Trimethyl-4-oxoazetidine-1-sulfonyl Chloride
13C NMR (125 MHz, CDCl3): δ = 160.6, 131.3, 130.7, 129.2, 127.5, 54.2,
Prepared by the typical procedure from 2-methylbut-2-ene (9) (sol-
vent: toluene; reaction time: 1 h; temp: –10 °C) as waxy crystals;
yield: 1.15 g (5.46 mmol, 91%); mp 44–45 °C (Lit.2c 44–45 °C).
44.0.
2-Methyl-4-oxo-2-phenylazetidine-1-sulfonyl Chloride
IR (ATR): 1809 cm–1
.
Prepared by the typical procedure from trans-β-methylstyrene (5)
(solvent: CD3NO2; reaction time: 2.5 h; temp: 10 °C) as white crystals;
yield: 1.46 g (5.70 mmol, 95%); mp 44–45 °C (Lit.2c 44–45 °C).
IR (ATR): 1817 cm–1
1H NMR (500 MHz, CDCl3): δ = 7.42 (m, 5 H), 4.85 and 4.84 (s, 1 H),
3.48 and 3.47 (q, J = 7.5 Hz, 1 H), 1.49 (d, J = 7.5 Hz, 3 H).
13C NMR (125 MHz, CDCl3): δ = 165.8, 134.5, 129.7, 129.2, 126.6, 66.9,
1H NMR (400, MHz, CDCl3): δ (two isomers syn and anti to the chloro-
sulfonyl group) = [3.29 and 3.25 (q, J = 7.6 Hz, 1 H)], [1.76 and 1.75 (s,
3 H)], [1.65 and 1.64 (s, 3 H)]; [1.32 and 1.31 (d, J = 7.6 Hz, 3 H)].
.
13C NMR (100 MHz, CDCl3): δ = 165.3, 69.8, 55.7, 26.4, 20.5, 8.9.
Attempts to isolate the N-chlorosulfonyl β-lactam product from 4-
methyl-α-fluorostyrene (12) were unsuccessful because the product
decomposed (see Supporting Information).
55.8, 12.2.
2-Oxo-3,4-diphenylazetidine-1-sulfonyl Chloride
Acknowledgment
Prepared by the typical procedure from cis-stilbene (6) (solvent:
CD3NO2; reaction time: 30 d; temp 10 °C) as a red oil; yield: 145 mg
(4.87 mmol 80%).
Support for this work was provided by the National Science Founda-
tion (NSF-RUI Grant No. CHE-0640547) and the Research Associates
of Point Loma Nazarene University, our science alumni support
group. We wish to thank Dr. Rouffet for helpful suggestions and guid-
ance during this study. We also acknowledge our use of the 400 and
500 MHz NMR spectrometers at the University of San Diego, obtained
by support from the National Science Foundation (NSF-MRI Grant No.
CHE-0417731).
cis-Isomer
IR (ATR): 1811 cm–1
.
1H NMR (500 MHz, CDCl3): δ = 5.20 (d, J = 7.5 Hz, 1 H), 5.72 (d, J = 7.5
Hz, 1 H), 7.06–7.18 (m, 10 H).
13C NMR (125 MHz, CDCl3): δ = 163.3, 131.5, 129.3, 128.9, 128.6,
128.4, 128.3, 128.2, 127.3, 64.6, 62.1.
Supporting Information
2-Butyl-4-oxoazetidine-1-sulfonyl Chloride
Prepared by the typical procedure from hex-1-ene (7) (solvent:
CH2Cl2; reaction time: 14 d; temp: 10 °C) as a clear oil; yield: 1.34 g
(5.94 mmol, 99%).
Supporting information for this article is available online at
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
IR (ATR): 1814 cm–1
.
1H NMR (500, MHz, CDCl3) : δ = 4.34 (m, 1 H), 3.39 (dd, J = 17.5 and
7.0 Hz, 1 H), 2.98 (dd, J = 17.5 and 4.0 Hz, 1 H), 2.18 (m, 1 H), 1.78 (m,
1 H), 1.39 (m, 4 H), 0.94 (t, J = 7.0 Hz, 3 H).
References
(1) (a) Dhar, D. N.; Kesheva Murthy, K. S. Synthesis 1986, 437.
(b) Szabo, W. A. Aldrichimica Acta 1977, 10, 23. (c) Rasmussen, J.
K.; Hassner, A. Chem. Rev. 1976, 76, 389. (d) Aue, D. H.; Iwahashi,
H.; Shellhamer, D. F. Tetrahedron Lett. 1973, 3719. (e) Graf, R.
Angew. Chem., Int. Ed. Engl. 1968, 7, 172. (f) Graf, R. Liebigs Ann.
Chem. 1963, 661, 111.
(2) (a) Hollywood, F.; Suschitzky, H.; Hull, R. Synthesis 1982, 662.
(b) Durst, T.; O’Sullivan, M. J. J. Org. Chem. 1970, 35, 2043.
(c) Moriconi, E. J.; Kelly, J. F. J. Org. Chem. 1968, 33, 3036.
(3) (a) Moriconi, E. J.; Crawford, W. C. J. Org. Chem. 1968, 33, 370.
(b) Moriconi, E. J.; Meyer, W. C. J. Org. Chem. 1971, 36, 2841.
(c) Furst, G. T.; Wachsman, M. A.; Pieroni, J.; White, J. G.;
Moriconi, E. J. Tetrahedron 1973, 29, 1675. (d) Forró, E.; Paál, T.;
Tasnádi, G.; Fülöp, F. Adv. Synth. Catal. 2006, 348, 917.
(e) Borsuk, K.; Kazimierski, A.; Solecha, J.; Urbańczyk-Lipkow-
ska, Z.; Chmielewski, M. Carbohydr. Res. 2002, 337, 2005.
(f) Kobayashi, Y.; Yoshio, I.; Terashima, S. Tetrahedron 1992, 48,
55.
13C NMR (125 MHz, CDCl3): δ = 161.9, 58.0, 43.4, 32.3, 26.8, 22.3, 13.8.
2-Butyl-4-oxoazetidine
2-Butyl-4-oxoazetidine-1-sulfonyl chloride was reduced with
NaHSO3/NaHCO3 as described above for 4-phenylazetidin-2-one.
1H NMR (500, MHz, CDCl3) : δ = 6.86 (br s, 1 H), 3.59 (m, 1 H) (protons
α to the carbonyl group showed both syn- and anti-absorptions) [3.04
and 3.03 (dd, J = 15.0, 0.5 Hz, 1 H)], [2.54 and 2.53 (dd, J = 15.0, 0.5 Hz,
1 H)], 1.65 (m, 2 H), 1.33 (m, 4 H), 0.91 (t, J = 7.0 Hz, 3 H).
13C NMR (125 MHz, CDCl3): δ = 168.9, 48.3, 43.4, 35.1, 28.4, 22.5, 14.0.
These spectra matched the published low-field NMR data.3b
2,3-Diethyl-4-oxoazetidine-1-sulfonyl Chloride
Prepared by the typical procedure from trans-hex-3-ene (8) (solvent:
CD3NO2; reaction time: 2 d; temp: 25 °C) as a clear oil; yield: 676 mg
(3.00 mmol, 50%).
(4) (a) Testero, S. A.; Fisher, J. F.; Mobashery, S. In Burger’s Medicinal
Chemistry: Drug Discovery and Development, 7th ed., Vol. 7,
Abraham, D. J.; Rotella, D. P., Eds.; Wiley: Hoboken, 2010, 259.
(b) Chemistry and Biology of Beta-Lactam Antibiotics; Vol. 1–3;
IR (ATR): 1814 cm–1
.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2015, 47, 1944–1950