D.-X. Wang, M.-X. Wang et al.
(32); elemental analysis calcd (%) for C36H24N9O15Cl3: C 46.54, H 2.60, N
13.57; found: C 46.59, H 2.71, N 13.34.
tion of a mixture of diethyl ether and hexane gave a single crystal of 13b
suitable for X-ray analysis. Single crystals of the complexes were ob-
tained by slow evaporation of solutions of 13b (10 mg) and 2,2’-bipyri-
dine (10 mg) in dichloromethane and hexane, 13b (10 mg) and 4,4’-bipyr-
idine (10 mg) in acetone and hexane, and 13b (10 mg) and 1,10-phenan-
throline (10 mg) in dichloromethane and hexane, respectively.
Synthesis of 12a from 6b: A solution of 6b (386 mg, 0.5 mmol) in THF
(20 mL) was added dropwise to a solution of di-n-propylamine (121 mg,
1.2 mmol) and diisopropylethylamine (284 mg, 2.2 mmol) in THF
(20 mL) at reflux over 30 min. After heating at reflux for another 6.5 h,
the reaction was stopped. The reaction mixture was then concentrated
and the residue was purified by chromatography on a silica gel column
eluting with a mixture of petroleum ether and ethyl acetate to afford
pure product 12a. M.p. 160–1618C; 1H NMR (300 MHz, CDCl3, 258C,
TMS): d=7.50 (s, 4H), 7.13–7.03 (m, 10H), 4.89 (s, 4H), 3.84 (s, 6H),
3.64–3.45 (m, 8H), 1.65 (hex., J=7.3 Hz, 8H), 0.95 ppm (t, J=7.3 Hz,
12H); 13C NMR (75 MHz, CDCl3, 258C, TMS): d=171.6, 167.6, 165.4,
147.8, 145.1, 136.6, 128.0, 127.6, 127.4, 124.7, 122.2, 74.8, 52.2, 49.4, 20.8,
11.4 ppm; IR (KBr): n˜ =1727, 1605, 1577 cmÀ1; MS (MALDI-TOF): m/z
(%): 901.4 [M+1]+, 923.4 [M+Na]+, 939.4 [M+K]+; elemental analysis
calcd (%) for C48H52N8O10: C 63.99, H 5.82, N 12.44; found: C 63.69, H
5.59, N 12.49.
CCDC-759599 (6a), 759852 (7a), 759949 (13b·0.25hexane·H20), 759950
(14), 759951 (13b·1,10-phen), 759952 (13b·4,4’-bipy) and 759953
(13b·2,2’-bipy) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Acknowledgements
We thank the National Science Foundation of China (NSFC, 20532030),
the Ministry of Science and Technology (MOST, 2007CB808005) and the
Chinese Academy of Sciences (CAS) for financial support. We also
thank Dr. X. Hao and T.-L. Liang for X-ray structure determination and
Dr. J.-F. Xiang for NMR measurements and discussions.
General procedure for the synthesis of the lower-rim-dihydroxylated tet-
raoxacalix[2]arene[2]triazines 11 and 13a,b: Under argon at room tem-
perature, anhydrous AlCl3 (2.0 g, 15 mmol) and dried toluene (100 mL)
were mixed together and stirred for 5–30 min. Macrocycle 6a, 6b, 12a or
12b (0.5 mmol) was then added and the resulting mixture was stirred at
room temperature for 0.5–12 h. The reaction mixture was then poured
into a mixture of crushed ice and water (100 mL) and dilute hydrochloric
acid (10%, 15 mL) was added. The organic layer was separated and the
aqueous layer extracted twice with ethyl acetate (2ꢃ150 mL). The com-
bined organic layers was dried over anhydrous sodium sulfate and con-
centrated under vacuum. Crystallisation of the residue from a mixture of
hexane and dichloromethane gave pure product 13a, whereas pure 11
and 13b were isolated by silica gel chromatography using a mixture of
petroleum ether and ethyl acetate as eluent.
Compound 11: M.p. >3008C; 1H NMR (300 MHz, [D6]DMSO, 258C,
TMS): d=10.87 (s, OH, 2H), 8.39 (d, J=8.2 Hz, 4H), 7.50 (s, 4H), 7.45
(d, J=8.2 Hz, 4H), 3.74 (s, 6H), 2.45 ppm (s, 6H); 13C NMR (75 MHz,
[D6]DMSO, 258C, TMS): d=175.2, 172.1, 164.6, 147.0, 143.9, 140.1, 131.5,
129.7, 128.7, 121.7, 119.2, 51.9, 21.2 ppm; IR (KBr): n˜ =3604, 3459, 1703,
1623, 1577, 1568 cmÀ1; MS (ESI, neg.): m/z (%): 701.1 [MÀ1]+; elemental
analysis calcd (%) for C36H26N6O10: C 61.54, H 3.73, N 11.96; found: C
61.31, H 3.96, N 11.95.
Compound 13a: M.p. 238–2408C; 1H NMR (300 MHz, CDCl3, 258C,
TMS): d=7.55 (s, 4H), 5.62 (s, OH, 2H), 3.83 (s, 6H), 3.63–3.50 (m, 8H),
1.70 (hex., J=7.5 Hz, 8H), 0.96 ppm (t, J=7.4 Hz, 12H); 13C NMR
(300 MHz, [D6]DMSO, 258C, TMS): d=10.34 (s, OH, 2H), 7.27 (s, 4H),
3.72 (s, 6H), 3.56–3.51 (m, 8H), 1.65 (hex., J=7.3 Hz, 8H), 0.92 ppm (t,
J=7.3 Hz, 12H); 13C NMR (75 MHz, CDCl3, 258C, TMS): d=171.0,
167.4, 165.4, 145.0, 140.8, 122.4, 121.8, 52.2, 49.5, 20.8, 11.2 ppm; IR
(KBr): n˜ =3355, 1724, 1705, 1612, 1592 cmÀ1; MS (MALDI-TOF): m/z
(%): 721.9 [M+1]+, 743.9 [M+Na]+, 759.8 [M+K]+; elemental analysis
calcd (%) for C34H40N8O10: C 56.66, H 5.59, N 15.55; found: C 56.36, H
5.51, N 15.43.
Compound 13b: M.p. 210–2128C; 1H NMR (300 MHz, CDCl3, 258C,
TMS): d=6.91 (s, 4H), 5.75 (s, OH, 2H), 1.38 (s, 18H), 1.13 ppm (s,
18H); 13C NMR (75 MHz, CDCl3, 258C, TMS): d=191.8, 171.6, 145.8,
141.8, 136.8, 116.5, 39.6, 34.3, 31.0, 28.6 ppm; IR (KBr): n˜ =3652, 3399,
3188, 1622, 1575, 1548 cmÀ1; MS (ESI, pos.): m/z (%): 631.5 [M+1]+,
653.4 [M+Na]+, 669.4 [M+K]+; elemental analysis calcd (%) for
C34H42N6O6: C 64.74, H 6.71, N 13.32; found: C 64.65, H 7.13, N 13.50.
[1] C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017–7036.
[2] D. J. Cram, Angew. Chem. 1986, 98, 1041–1060; Angew. Chem. Int.
Ed. Engl. 1986, 25, 1039–1057.
[3] B. Dietrich, J.-M. Lehn, J. P. Sauvage, Tetrahedron Lett. 1969, 10,
2885–2888.
[4] a) Calixarenes (Eds.: Z. Asfari, V. Bçhmer, J. Harrowfield, J. Vicens,
M. Saadioui), Kluwer Academic, Dordrecht, 2001; b) C. D. Gutsche,
Calixarenes Revisited, RSC, Cambridge, 1998; c) Calixarenes in
Action (Eds.: L. Mandolini, R. Ungaro), Imperial College Press,
London, 2000; d) G. J. Lumetta, R. D. Rogers, A. S. Gopalan, Calix-
arenes for Separation, ACS, Washington, 2000.
[5] For a monograph, see: C. D. Gutsche, Calixarenes, RSC, Cambridge,
1989.
[6] For useful reviews on heterocalixaromatics, see: a) M.-X. Wang,
Chem. Commun. 2008, 4541–4551; b) W. Maes, W. Dehaen, Chem.
Soc. Rev. 2008, 37, 2393–2402; c) H. Tsue, K. Ishibashi, R. Tamura,
Top. Heterocycl. Chem. 2008, 17, 73–96; d) B. Kçnig, M. H. Fonseca,
Eur. J. Inorg. Chem. 2000, 2303–2310.
[7] For recent examples of nitrogen-bridged calixaromatics, see: a) A.
Ito, Y. Ono, K. Tanaka, New J. Chem. 1998, 22, 779–781; b) A. Ito,
Y. Ono, K. Tanaka, J. Org. Chem. 1999, 64, 8236–8241; c) Y. Miya-
zaki, T. Kanbara, T. Yamamoto, Tetrahedron Lett. 2002, 43, 7945–
7948; d) M.-X. Wang, X.-H. Zhang, Q.-Y. Zheng, Angew. Chem.
2004, 116, 856–860; Angew. Chem. Int. Ed. 2004, 43, 838–842;
e) H.-Y. Gong, X.-H. Zhang, D.-X. Wang, H.-W. Ma, Q.-Y. Zheng,
M.-X. Wang, Chem. Eur. J. 2006, 12, 9262–9275; f) H.-Y. Gong, Q.-
Y. Zheng, X.-H. Zhang, D.-X. Wang, M.-X. Wang, Org. Lett. 2006,
8, 4895–4898; g) H. Tsue, K. Ishibashi, H. Takahashi, R. Tamura,
Org. Lett. 2005, 7, 2165–2168; h) W. Fukushima, T. Kanbara, T. Ya-
mamoto, Synlett 2005, 2931–2934; i) T. D. Selby, S. C. Blackstock,
Org. Lett. 1999, 1, 2053–2055; j) Y. Suzuki, T. Yanagi, T. Kanbara,
T. Yamamoto, Synlett 2005, 263–266; k) K. Ishibashi, H. Tsue, S.
Tokita, K. Matsui, H. Takahashi, R. Tamura, Org. Lett. 2006, 8,
5991–5994; l) H.-Y. Gong, D.-X. Wang, J.-F. Xiang, Q.-Y. Zheng,
M.-X. Wang, Chem. Eur. J. 2007, 13, 7791–7802; m) S.-Q. Liu, D.-X.
Wang, Q.-Y. Zheng, M.-X. Wang, Chem. Commun. 2007, 3856–3858;
n) E.-X. Zhang, D.-X. Wang, Q.-Y. Zheng, M.-X. Wang, Org. Lett.
2008, 10, 2565–2568; o) H.-Y. Gong, D.-X. Wang, Q.-Y. Zheng, M.-
X. Wang, Tetrahedron 2009, 65, 87–92; p) J. Clayden, S. J. M. Row-
bottom, W. J. Ebenezer, M. G. Hutchings, Org. Biomol. Chem. 2009,
7, 4871–4880; q) M. Xue, C. F. Chen, Org. Lett. 2009, 11, 5294–
5297; r) H. Konishi, S. Hashimoto, T. Sakakibara, S. Matsubara, Y.
Yasukawa, O. Morikawa, K. Kobayashi, Tetrahedron Lett. 2009, 50,
620–623.
1H NMR spectral titrations: In each 1H NMR titration experiment, the
concentration of host 13b was kept constant and the concentration of
guest was increased gradually from 0–16.987ꢃ10À3 m for 1,10-phenanthro-
line, 0–33.72ꢃ10À3 m for 4,4’-bipyridine and 0–34.00ꢃ10À3 m for 2,2’-bipyr-
idine. The stoichiometry of the complex was obtained by the Job plot
method. The association constants were calculated on the basis of
1H NMR experimental isotherms using Hyperquad 2003 program.
Preparation of single crystals: The single crystals of 6a, 6b, 7a, and 14
suitable for X-ray analysis were obtained by slow evaporation of a solu-
tion of dichloromethane and hexane at room temperature. Slow evapora-
7274
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2010, 16, 7265 – 7275