1030
A. Orthaber et al. / Journal of Fluorine Chemistry 131 (2010) 1025–1031
The phosphinic acid is insoluble in typical organic solvents, with
the exception of acetone and water. Compound 2a is an oily
material which solidifies upon standing at 4 8C. Yield: 203 mg
n.d. 19F NMR (CDCl3, 282 MHz):
d
= ꢁ128.73 (m), ꢁ136.99 (br. s).
31P NMR (CDCl3, 121 MHz):
d = +38.1 (br. s).
(0.95 mmol, 99%). Mp. 27 8C. 1H NMR (CD3COCD3, 400 MHz):
5.6. Crystallographic details
1
d
= 7.67 (1H, m, aryl), 7.90 (1H, d, JPH = 629.5 Hz), 8.37 (s, 1H,
exchanges rapidly with acetone–d6); 13C NMR (CD3COCD3,
X-ray studies have been carried out with a Bruker Apex-III
diffractometer equipped with a CCD detector. Structures are solved
by direct methods using SHEL-XS and refined with SHEL-XL [39]. In
compounds 2b and 3a the H atoms of the methyl groups were
refined with common isotropic displacement parameters for the H
atoms of the same group and idealized geometry with tetrahedral
angles, enabling rotation around the X–C bond, and C–H distances
1
100 MHz):
d
= 110.61 ppm, 146.00 (dm, JCF 235.7 Hz), 147.53
(dm, 1JCF 259.3 Hz), Caryl–P 116.4 (from freshly prepared D2O/H2O
solution). 31P NMR (CD3COCD3, 162 MHz):
d = 2.2 ppm (d,
1JPH = 630 Hz) after 12 h. 1H was completely exchanged by 2H.
The initial doublet becomes a triplet of constant intensity. 2.2 ppm
(t, 1JPD = 92 Hz). 19F NMR (THF–d8, 282.4 MHz):
d
= ꢁ141.09 (br. s,
4F). IR(KBr [cmꢁ1]): 3104 (w, Carom.–H), 2469 (w, P–H), 2090 (m
br.), 1610 (m arom.), 1484 (str, arom.), 1375 (m), 1246 (str, P55O),
863 (m, P–OH).
of 0.98 A. Hydrogen atoms of the phenyl rings were put at the
˚
˚
external bisector of the C–C–C angle at a C–H distance of 0.95 A and
common isotropic displacement parameters were refined for the H
atoms of the same phenyl group. All other hydrogen atoms in 2a,
2b and 3a have been located on the difference Fourier map and
were refined isotropically without any constraints. In Table 2,
crystal and refinement data for 2a, 2b, and 3a are summarized.
5.3. Synthesis of 2b
To a solution of Mes–PCl2 (0.65 g, 2.9 mmol) in chloroform
2.5 equiv of H2O are added at 0 8C. The mixture is stirred for 1 h.
The organic phase is dried over MgSO4 and the solvent removed in
vacuum yielding 0.40 g pure product (2.2 mmol, 75%). Colorless
crystals suitable for X-ray diffraction are obtained by slow
evaporation of chloroform solutions. Mp: 143 8C. 1H NMR (CDCl3,
Acknowledgements
Financial support by the Austrian Science Fund (FWF) (Grants
P18591-B03 and P20575-N19) and the EU-COST Action CM0802
‘‘PhoSciNet’’ are gratefully acknowledged.
300 MHz):
aryl), 2.57 (6H, s, o-CH3), 2.28 (3H, s, p-CH3). 13C NMR (CDCl3,
75.5 MHz): = 142.64 (s, Cpara) 141.47 (d, 11.7 Hz, Cmeta), 139.11 (d,
12.2 Hz, Cortho), 124.03 (d, 1JPC 138.1 Hz, Cipso), 20.96 (d, 3JPC 8.9 Hz,
m-CH3), 14.21 (s, p-CH3). 31P NMR (CDCl3, 121.5 MHz):
= 24.2 (d,
d
= 8.03 (1H, d, 1JPH = 562.0 Hz), 6.76 (2H, d, 4JPH 4.3 Hz,
References
d
[1] V.S. Sergienko, G.G. Aleksandrov, Russ. J. Coord. Chem. 27 (2001) 324–340.
[2] W.W. Metcalf, W.A. van der Donk, Annu. Rev. Biochem. 78 (2009) 65–94.
[3] M. Collinsova, J. Jiracek, Curr. Med. Chem. 7 (2000) 629–647.
[4] K.B. Dillon, H.P. Goodwin, J. Organomet. Chem. 429 (1992) 169–171.
[5] M. Scholz, H.W. Roesky, D. Stalke, K. Keller, F.T. Edelmann, J. Organomet. Chem.
366 (1989) 73–85.
[6] K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzo, V.L. Rudzevich, H. Gornitzka, V.
Lavallo, V.D. Romanenko, Eur. J. Inorg. Chem. (2004) 2289–2300.
[7] M.L. Clarke, D. Ellis, K.L. Mason, A.G. Orpen, P.G. Pringle, R.L. Wingad, D.A. Zaher,
R.T. Baker, Dalton Trans. (2005) 1294–1300.
d
1JPH 562 Hz). IR(KBr [cmꢁ1]): 2942 (w, Carom.–H), 2920 (w, Methyl),
2408 (w, P–H), 2155 (m. br.), 1605 (str., arom. stretch), 1561 (str.,
arom. stretch), 1457 (m, CH3 bent), 1190(m, P55O stretch), 1092
(m), 964 (m), 853 (m, P–OH stretch).
5.4. Addition of 2a to acetone and formation of 3a
[8] J.E. Griffiths, A.B. Burg, J. Am. Chem. Soc. 82 (1960) 1507–1508.
[9] R.C. Dobbie, B.P. Straughan, Spectrochim. Acta Part A 27 (1971) 255–260.
[10] B. Hoge, J. Bader, H. Beckers, Y.S. Kim, R. Eujen, H. Willner, N. Ignatiev, Chem. Eur. J.
15 (2009) 3567–3576.
[11] B. Hoge, B. Kurscheid, Angew. Chem. Int. Ed. 47 (2008) 6814–6816.
[12] P.A. Chase, G.C. Welch, T. Jurca, D.W. Stephan, Angew. Chem. Int. Ed. 119 (2007)
8196–8199.
Phosphinic acid 2a (174 mg, 0.81 mmol) was dissolved in
acetone and placed in a screw top vial at room temperature. Small
plates of 3a suitable for X-ray diffraction were obtained after 3
weeks of crystallization. After collecting the solid material and
washing with chloroform pure crystalline material was obtained.
[13] G.C. Welch, L. Cabrera, P.A. Chase, E. Hollink, J.D. Masuda, P. Wei, D.W. Stephan,
Dalton Trans. (2007) 3407–3414.
Yield 116 mg (0.43 mol, 52%). Mp. 131 8C. 1H NMR (CD3COCD3,
3
400 MHz):
d
= 7.77 (m, 1H, aryl), 1.39 (d, ‘‘6H’’, JPH 16.0 Hz); 13C
[14] B. Hoge, S. Neufeind, S. Hettel, W. Wiebe, C. Thosen, J. Organomet. Chem. 690
¨
1H-HMBC/HSQC (THF–d8, 100 MHz): 23.33 (CH3), 70.11 (d, JPC
1
(2005) 2382–2387.
[15] M. Regitz, R. Martin, Tetrahedron 41 (1985) 819–824.
[16] B. Kaboudin, N. As-habei, Tetrahedron Lett. 45 (2004) 9099–9101.
[17] B. Kaboudin, H. Haghighat, Tetrahedron Lett. 46 (2005) 7955–7957.
[18] K.L. Freeman, M.J. Gallagher, Aust. J. Chem. 19 (1966) 2025–2033.
[19] L.F. Rozhko, V.V. Ragulin, Russ. J. Gen. Chem. 74 (2004) 1087–1090.
[20] J. Cai, Z. Zhou, G. Zhao, C. Tang, Heteroatom. Chem. 14 (2003) 312–315.
[21] H. Bauer, W. Krause, P. Staniek, in: S. Clariant International Ltd. (Ed.) PCT Int. Appl.
(2008).
13.8 Hz), 110.76 (p-Carom.), 145.02–148.61 (m, o- and m-C). Carom.
P could not be detected. 31P NMR (CD3COCD3, 121.5 MHz)
= 46.4;
31P NMR (THF–d8, 121.5 MHz): = 34.3, 19F NMR (THF–d8,
282.4 MHz):
= ꢁ131.64 (m, 2F, Cortho–F), ꢁ141.07 (m, 2F,
meta–F); IR(KBr [cmꢁ1]): 3121 br.w. 1476 (s, str), 1248 (s, str.,
–
d
d
d
C
P55O), 970 (s, m), 917 (s, m). 860 (w, P–OH).
[22] F. Ma, X. Shen, J. Ou-Yang, Z. Deng, C. Zhang, Tetrahedron: Asymmetry 19 (2008)
31–37.
[23] M. Drag, R. Grzywa, J. Oleksyszyn, Bioorg. Med. Chem. Lett. 17 (2007) 1516–1519.
[24] M. Schlosser, D. Michel, Tetrahedron 52 (1996) 99–108.
[25] A. Bondi, J. Phys. Chem. 68 (1964) 441–451.
[26] A. Orthaber, F. Belaj, R. Pietschnig, J. Organomet. Chem. 695 (2010) 974–980.
[27] By comparison of the calculated with the measured IR spectra bands at 2469
(2503) and 1246 (1273) for 2a and 2408 (2424) and 1190 (1244) are assigned to
P–H and P5O stretching modes, respectively. Measured (calculated) wavenum-
bers [cmꢁ1].
[28] R.A. Burrow, D.H. Farrar, A.J. Lough, M.R. Siqueira, F. Squizani, Acta Crystallogr.
Sect. C: Cryst. Struct. Commun. 56 (2000) e357–e358.
[29] S.M. Cornet, K.B. Dillon, J.A.K. Howard, P.K. Monks, A.L. Thompson, Acta Crystal-
logr. Sect. C: Cryst. Struct. Commun. 65 (2009) o195–o197.
[30] Y. Belabassi, A.F. Gushwa, A.F. Richards, J.-L. Montchamp, Phosphorus Sulfur
Silicon Relat. Elem. 183 (2008) 2214–2228.
[31] C. Nolde, M. Schu¨rmann, M. Mehring, Z. Anorg. Allg. Chem. 633 (2007) 142–150.
[32] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[33] N.S. Golubev, R.E. Asfin, S.N. Smirnov, P.M. Tolstoi, Russ. J. Gen. Chem. 76 (2006)
915–924.
5.5. Addition of 2a to 2-butanone
The solid phosphinic acid 2a (27 mg, 0.13 mmol) is dissolved in
2-butanone (5 ml) and stirred at slightly elevated temperatures for
2 days. Complete conversion into the corresponding
phosphinic acid was checked by 31P NMR spectroscopy. After
removal of the excess of 2-butanone the resulting oily material is
extracted with chloroform. Spectroscopically pure product is
obtained as viscous oil after removal of the solvent under vacuum
(33 mg, 0.12 mmol, 91%).
a-hydroxy
1H NMR (CDCl3, 300 MHz):
CH3), 1.35 (d, JPH 17.2 Hz, 3H, CH3), 1.76 (m, 2H, CH2–CH3), 6.75
(br. S, OH), 7.26 (m, 1H, aryl). 13C NMR (CDCl3, 75 MHz):
d
= 0.99 (br. t, 3JHH 7.1 Hz, 3H, CH2–
3
d = 6.6
1
(CH2–CH3), 19.2 (CH2–CH3), 27.9 (CH3), 73.7 (d, JPC 147.0 Hz, C–
OH), 111.2 (Caryl–H), 145.5 (dm, JCF 261.9 Hz, o, m-Caryl), P–Caryl
1
[34] B.-M. Fung, I.Y. Wei, J. Am. Chem. Soc. 92 (1970) 1497–1501.