pubs.acs.org/joc
metabolic disorders,4 irritable bowel syndrome (IBS),5 viral
Synthesis of 2-Aminobenzoxazoles
Using Tetramethyl Orthocarbonate
or 1,1-Dichlorodiphenoxymethane
infection,6 thrombosis,7 and insomnia.8
There are several approaches to this scaffold; however,
each one has specific disadvantages (Scheme 1). The classical
route involves nucleophilic displacement of a 2-substituted
benzoxazole (2-substituents include Cl,9 SH,10 SCH3,11 or
OPh12) with an amine. Drawbacks of these routes include
penultimate intermediates that involve multiple steps to
prepare, utilization of harsh reagents and conditions, or
generation of undesirable byproducts. Cyclodesulfurization of an
intermediary thiourea may involve a toxic heavy-metal oxide,13
potentially explosive oxidant,14 or transition metal15 to facilitate
cyclization. Previously reported methods to generate 2-amino-
benzoxazoles directly from 2-aminophenols may require the
preparation of either a thioisocyanate (5),16 N-cyanodithioimido-
carbonate (6),17 or chloroformadinium salt (7)18 prior to cycliza-
tion. 2-Aminobenzoxazoles have also been prepared directly
from benzoxazoles using chloroamines19 or formamides20 as
amine surrogates. However, these reactions either require
initial chlorination of the amine prior to reaction with the
benzoxazole or in the case of formamides Ag2CO3 and
heating at 130 °C to furnish the desired products.
€
Christopher L. Cioffi,* John J. Lansing, and Hamza Yuksel
Department of Discovery Research and Development,
Chemistry, AMRI, 30 Corporate Circle, Albany, New York
12203-5098, United States
Received August 30, 2010
The synthesis of 2-aminobenzoxazoles can be readily
achieved by two versatile, one-pot procedures utilizing
commercially available tetramethyl orthocarbonate or
1,1-dichlorodiphenoxymethane, an amine, and an op-
tionally substituted 2-aminophenol. The reactions were
conducted under mild conditions and provided 2-amino-
benzoxazoles in modest to excellent yields. A variety of
amines and substituted 2-aminophenols were used to
investigate the scope of the reactions.
In our laboratories, we required a facile method for
preparing a proprietary 2-aminobenzoxazole that was safe,
efficient, and amenable to large-scale production. We sought
easily handled, commercially available, and relatively inex-
pensive reagents that could facilitate formation of 2-amino-
benzoxazoles from readily available amines and substituted
2-aminophenols in a single step. Herein we report two novel,
(8) (a) Whitman, D. B.; Cox, C. D.; Breslin, M. J.; Brashear, K. M.;
Schreier, J. D.; Bogusky, M. J.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.;
Hartman, G. D.; Reiss, D. R.; Harrell, C. M.; Kraus, R. L.; Li, Y.; Garson,
S. L.; Doran, S. C.; Prueksaritanont, T.; Li, C.; Winrow, C. J.; Koblan, K. S.;
Renger, J. J.; Coleman, P. J. ChemMedChem 2009, 4, 1069. (b) Cox, C. D.;
Breslin, M. J.; Whitman, D. B.; Schreier, J. D.; McGaughey, G. B.; Bogusky,
M. J.; Roecker, A. J.; Mercer, S. P.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.;
Reiss, D. R.; Harrell, C. M.; Murphy, K. L.; Garson, S. L.; Doran, S. M.;
Prueksaritanont, T.; Anderson, W. B.; Tang, C.; Roller, S.; Cabalu, T. D.;
Cui, D.; Hartman, G. D.; Young, S. D.; Koblan, K. S.; Winrow, C. J.;
Renger, J. J.; Coleman, P. J. J. Med. Chem. 2010, 53, 5320. (c) Bergman,
J. M.; Breslin, M. J.; Coleman, P. J.; Cox, C. D.; Mercer, S. P.; Roecker, A. J.
WO2008/069997 A1, 2008.
(9) (a) Seefelder, M.; Leuchs, D. GB 913910, 1962. (b) Gross, H.; Gloede,
J. Z. Chem. 1965, 5, 178.
(10) (a) Katz, L.; Cohen, M. J. Org. Chem. 1954, 19, 758. (b) Annemarie,
H.; Schlaak, G.; Kerstan, C. Pharmazie 1987, 42, 80.
(11) (a) Hogarth, E. J. Chem. Soc. 1949, 3311. (b) Yamato, M.; Takeuchi,
Y.; Hattori, K.; Hashigaki, K. Chem. Pharm. Bull. 1984, 32, 3053.
2-Aminobenzoxazoles are ubiquitous scaffolds featured in
a wide variety of therapeutic agents. Some examples of
therapeutic indications treated by compounds containing
this motif include CNS disorders,1 cancer,2 inflammation,3
(1) (a) Shu He, X. US 628479B1, 2001. (b) Wythes, M. J.; Palmer, M. J.;
Kemp, M. I.; Mackenny, M. C.; Maguire, R. J.; Blake, J. F. PCT WO 00/
05231A1, 2000. (c) Liu, K. G.; Lo, J. R.; Comery, T. A.; Zhang, G. M.;
Zhang, J. Y.; Kowal, D. M.; Smith, D. L.; Kerns, E. H.; Schechter, L. E.;
Robichaud, A. J. Bioorg. Med. Chem. Lett. 2009, 19, 1115. (d) O’Donnell,
C. J.; Rogers, B. N.; Bronk, B. S.; Bryce, D. K.; Coe, J. W.; Cook, K. K.;
Duplantier, A. J.; Evrard, E.; Hajos, M.; Hoffmann, W. E.; Hurst, R. S.;
ꢀ
€
ꢁ
ꢁ
Maklad, N.; Mather, R. J.; McLean, S.; Nedza, F. M.; ONeill, B. T.; Peng,
(12) Koever, J.; Tı
´
mar, T.; Tompa, J. Synthesis 1994, 1124.
L.; Qian, W.; Rottas, M. M.; Sands, S. B.; Scmidt, A. W.; Shrikhande, A. V.;
Spracklin, D. K.; Wong, D. F.; Zhang, A.; Zhang, L. J. Med. Chem. 2010, 53,
1222.
(13) (a) Ogura, H.; Mineo, S.; Nakagawa, K. Chem. Pharm. Bull. 1981,
29, 1518. (b) Qian, X. H.; Li, Z. B.; Song, G. H.; Li, Z. Chem. Res. Synop.
2001, 4, 138.
(2) (a) Cheung, M.; Harris, P.; Hasegawa, M.; Ida, S.; Kano, K.;
Nishigaki, N. PCT WO 02/44156A2, 2002.
(3) Clark, D.; Eastwood, P.; Harris, N.; McCarthy, C.; Morley, A.;
Pickett, S. PCT WO 00/49005, 2000.
(14) Chang, H. S.; Yon, G. H.; Kim, Y. H. Chem. Lett. 1986, 1291.
(15) Wishart, N.; Rudolph, A.; Ritter, K. US Patent US2003/0109714
A1.
(16) (a) Tian, Z.; Plata, W. S. J.; Bhatia, A. Tetrahedron Lett. 2005, 8341.
€
(b) Heinelt, U.; Shultheis, D.; Jager, S.; Lindenmaier, M.; Pollex, A.; Beckman,
H. Tetrahedron 2004, 60, 9883.
(17) (a) Wittenbrook, L. S. J. Heterocycl. Chem. 1975, 12, 37. (b) Webb,
R.; Eggleston, D.; Labaw, C.; Lewis, J.; Wert., K. J. Heterocycl. Chem. 1987,
24, 275.
(18) El-Faham, A.; Chebbo, M.; Abdul-Ghani, M.; Younes, G. J.
Heterocycl. Chem. 2006, 43, 599.
(19) Kawano, T.; Hirano, K.; Satoh, T.; Masahiro, M. J. Am. Chem. Soc.
2010, 132, 6900.
(4) Muller, P.; Huranus, R.; Maier, R.; Mark, M.; Eisele, B.; Budzinski,
R.-M.; Thomas, L.; Hallermayer, G. US Patent US 5919807, 1999.
(5) Sato, Y.; Yamada, M.; Kobayashi, K.; Iwamatsu, K.; Konno, F.;
Shudo, K. EP 806419 A1, 1997.
(6) (a) Surleraux, D. L. N. G.; Vendeville, S. M. H.; Verschueren, W. G.;
De Bethune, M.-P. T. M. G.; De Kock, H. A.; Tahri, A. WO 02/092595A1,
2002. (b) Brandl, T.; Fu, J.; Lenoir, F.; Parker, D.; Patane, M.; Radetich, B.;
Raman, P.; Rigollier, P.; Seepersaud, M.; Simic, O.; Yifru, A.; Zheng, R.
WO 2007/133865A2, 2007.
(7) Laibekman, A.; Jantzen, H.-M.; Conley, L.; Fretto, L.; Scarborough,
R. US 6667306B1, 2003.
(20) Cho, S. H.; Kim, Ji Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed.
2009, 48, 9127.
7942 J. Org. Chem. 2010, 75, 7942–7945
Published on Web 10/25/2010
DOI: 10.1021/jo1017052
r
2010 American Chemical Society