C O M M U N I C A T I O N S
(9) For formal and total syntheses of oxo-polyene macrolides, see: (a) Nicolaou,
K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty,
T. K. J. Am. Chem. Soc. 1988, 110, 4672. (b) Poss, C. S.; Schreiber, S. L.
J. Am. Chem. Soc. 1993, 115, 3360. (c) Dreher, S. D.; Leighton, J. L. J. Am.
Chem. Soc. 2001, 123, 341. (d) Rychnovsky, S. D.; Hoye, R. C. J. Am.
Chem. Soc. 1994, 116, 1753. (e) Mori, Y.; Asai, M.; Kawade, J.-i.;
Okumura, A.; Furukawa, H. Tetrahedron Lett. 1994, 35, 6503. (f) Mori,
Y.; Asai, M.; Okumura, A.; Furukawa, H. Tetrahedron 1995, 51, 5299.
(g) Mori, Y.; Asai, M.; Kawade, J.-i.; Furukawa, H. Tetrahedron 1995,
51, 5315. (h) Evans, D. A.; Connell, B. T. J. Am. Chem. Soc. 2003, 125,
10899. (i) Filipin III: Richardson, T. I.; Rychnovsky, S. D. J. Am. Chem.
Soc. 1997, 119, 12360. (j) Roflamycoin: Rychnovsky, S. D.; Khire, U. R.;
Yang, G. J. Am. Chem. Soc. 1997, 119, 2058. (k) Dermostatin: Sinz, C. J.;
Rychnovsky, S. D. Angew. Chem., Int. Ed. 2001, 40, 3224. (l) RK-397:
Burova, S. A.; McDonald, F. E. J. Am. Chem. Soc. 2004, 126, 2495. (m)
Denmark, S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971. (n) Mitton-
Fry, M. J.; Cullen, A. J.; Sammakia, T. Angew. Chem., Int. Ed. 2007, 46,
1066. (o) Guo, H.; Mortensen, M. S.; O’Doherty, G. A. Org. Lett. 2008,
10, 3149.
(10) For isolation of (+)-roxaticin, see: Maehr, H.; Yang, R.; Hong, L.-N.; Liu,
C.-M.; Hatada, M. H.; Todaro, L. J. J. Org. Chem. 1989, 54, 3816.
(11) For enantioselective carbonyl allylation Via iridium catalyzed C-C bond
forming transfer hydrogenation and related processes, see: (a) Kim, I. S.;
Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340. (b) Kim,
I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891. (c)
Lu, Y.; Kim, I. S.; Hassan, A.; Del Valle, D. J.; Krische, M. J. Angew.
Chem., Int. Ed. 2009, 48, 5018. (d) Lu, Y.; Krische, M. J. Org. Lett. 2009,
11, 3108. (e) Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc.
2009, 131, 2514. (f) Han, S. B.; Kim, I.-S.; Han, H.; Krische, M. J. J. Am.
Chem. Soc. 2009, 131, 6916. (g) Itoh, J.; Han, S. B.; Krische, M. J. Angew.
Chem., Int. Ed. 2009, 48, 6316. (h) Hassan, A.; Lu, Y.; Krische, M. J.
Org. Lett. 2009, 11, 3112. (i) Han, S. B.; Han, H.; Krische, M. J. J. Am.
Chem. Soc. 2010, 132, 1760. (j) Zhang, Y. J.; Yang, J. H.; Kim, S. H.;
Krische, M. J. J. Am. Chem. Soc. 2010, 132, 4562. (k) Han, S. B.; Gao,
X.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 9153. (l) Zbieg, J. R.;
Fukuzumi, T. AdV. Synth. Catal. 2010, in press. (m) For a recent application
in total synthesis, see: Harsh, P.; O’Doherty, G. A. Tetrahedron 2009, 65,
5051.
approach circumvents additional manipulations associated with the
use of non-native functional groups or substructures to mediate bond
construction, as evident in the use of chiral auxiliaries, and
minimizes (re)functionalizations, especially redox manipulations.
Indeed, as demonstrated in carbonyl additions from the alcohol
oxidation level, as in the conversion of 5 to 6a, the union of
oxidation-construction events allows one to bypass discrete alcohol
oxidation while gaining access to more tractable synthetic inter-
mediates in the form of alcohols. These features are in line with
longstanding ideals of synthetic efficiency.22,23
Acknowledgment. Acknowledgment is made to the Robert A.
Welch Foundation (F-0038), the NIH-NIGMS (RO1-GM069445),
the American Chemical Society Green Chemistry Institute Phar-
maceutical Roundtable, and the University of Texas at Austin,
Center for Green Chemistry and Catalysis. Dr. Yasunori Ino, Dr.
Wataru Kuriyama, and Dr. Taichiro Touge of Takasago are thanked
for the generous donation of SEGPHOS. The Higher Education
Commission of Pakistan is acknowledged for graduate student
fellowship support (A.H.). The Korea Research Foundation (KRF-
2007-356-E00037) is acknowledged for postdoctoral fellowship
support (I.S.K.).
Supporting Information Available: Detailed experimental proce-
dures, spectral data for new compounds, including scanned images of
1H and 13C NMR spectra. This material is available free of charge via
(12) For a review on two-directional chain synthesis, see: Poss, C. S.; Schreiber,
S. L. Acc. Chem. Res. 1994, 27, 9. and literature cited in ref 11c.
(13) This mechanism for enantiomeric enrichment is documented by Eliel and
Midland: (a) Kogure, T.; Eliel, E. L. J. Org. Chem. 1984, 49, 576. (b)
Midland, M. M.; Gabriel, J. J. Org. Chem. 1985, 50, 1144. Also see, ref
11c.
(14) In the course of a synthetic approach to (+)-phorboxazole A, the mono-
TBS (tert-butyldimethylsilyl) derivative of C2-symmetric diol (S,S)-1 was
prepared in seven steps from propylene glycol through successive use of
Brown’s reagent for asymmetric carbonyl allylation, Ipc2(n-C3H5)B, and
an improved procedure delivers (S,S)-1 in four steps from acetylacetone:
(a) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M. J. Am.
Chem. Soc. 2001, 123, 10942. (b) Rychnovsky, S. D.; Griesgraber, G.;
Zeller, S.; Skalitsky, D. J. J. Org. Chem. 1991, 56, 5161. (c) Rychnovsky,
S. D.; Griesgraber, G.; Powers, J. P. Org. Synth. 2000, 77, 1.
(15) In large volume ozonolysis reactions, NaBH4 reduction of the ozonide is
preferred as this protocol circumvents generation of stoichiometric organic
byproducts and, hence, facilitates product purification: Caron, S.; Dugger,
R. W.; Gut Ruggeri, S.; Ragan, J. A.; Brown Ripin, D. H. Chem. ReV.
2006, 106, 2943.
(16) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485.
(17) For preparation of homoallylic ether A, see ref 9l. Alternatively, compound
A may be prepared via iridium catalyzed crotylation of isobutanol em-
ploying R-methyl allyl acetate under conditions that favor the syn-adduct.
(18) Although the second generation Grubbs catalyst is known to promote closely
related cross-metathesis reactions of allylic and homoallylic alcohols, the
second generation Hoveyda-Grubbs catalyst was superior in this particular
case: Nyavanandi, V. K.; Nadipalli, P.; Nanduri, S.; Naidu, A.; Iqbal, J.
Tetrahedron Lett. 2007, 48, 6905.
(19) For cross-metathesis of an unprotected homoallylic alcohols with acrolein
employing the second generation Hoveyda-Grubb’s catalyst, see: Chan,
K.-P.; Ling, Y. H.; Loh, T.-P. Chem. Commun. 2007, 939.
(20) The Horner-Wadsworth-Emmons reagent EtO2C(CHdH)3CH2PO(OEt)2
was prepared in six steps using a combination of established procedures: (a)
Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 533. (b) Doyle, M. P.; Wang,
Y.; Ghorbani, P.; Bappert, E. Org. Lett. 2005, 7, 5035.
(21) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Soc.
Chem. Jpn. 1979, 52, 1989.
(22) “The ideal synthesis creates a complex skeleton...in a sequence only of
successive construction reactions involving no intermediary refunctional-
izations, and leading directly to the structure of the target, not only its
skeleton but also its correctly placed functionality.” Hendrickson, J. B.
J. Am. Chem. Soc. 1975, 97, 5784.
(23) For an outstanding review on the topic of “redox economy” in organic
synthesis, see: Baran, P. S.; Hoffmann, R. W.; Burns, N. Z. Angew. Chem.,
Int. Ed. 2009, 48, 2854.
References
(1) For selected reviews on polyketide natural products, see: (a) O’Hagan, D.
The Polyketide Metabolites; Ellis Horwood: Chichester, U.K., 1991. (b)
Polyketides Biosynthesis, Biological ActiVity, and Genetic Engineering;
Rimando, A. M., Baerson, S. R., Eds.; ACS Symposium Series 955;
American Chemical Society: Washington, DC, 2007.
(2) (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461. (b) Newman,
D. J.; Grothaus, P. G.; Cragg, G. M. Chem. ReV. 2009, 109, 3012.
(3) Rohr, J. Angew. Chem., Int. Ed. 2000, 39, 2847.
(4) For selected reviews on polyketide biosynthesis, see: (a) Birch, A. J. Science
1967, 156, 202. (b) Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold,
A. Nat. Prod. Rep. 2007, 24, 162. (c) Van Lanen, S. G.; Shen, B. Curr.
Opin. Drug DiscoVery DeV. 2008, 11, 186. (d) Das, A.; Khosla, C. Acc.
Chem. Res. 2009, 42, 631. (e) Gallimore, A. R. Nat. Prod. Rep. 2009, 26,
266.
(5) For selected reviews on synthetic methods for polyketide construction, see:
(a) Paterson, I.; Doughty, V. A.; Florence, G.; Gerlach, K.; McLeod, M. D.;
Scott, J. P.; Trieselmann, T. ACS Symp. Ser. 2001, 783, 195. (b) Koskinen,
A. M. P.; Karisalmi, K. Chem. Soc. ReV. 2005, 34, 677. (c) Yeung, K.-S.;
Paterson, I. Chem. ReV. 2005, 105, 4237. (d) Schetter, B.; Mahrwald, R.
Angew. Chem., Int. Ed. 2006, 45, 7506. (e) Morris, J. C.; Nicholas, G. M.;
Phillips, A. J. Nat. Prod. Rep. 2007, 24, 87. (f) Paterson, I. Total Synthesis
of Polyketides using Asymmetric Aldol Reactions. In Asymmetric Synthesis,
2nd ed.; Christmann, M., Bra¨se, S., Eds.; Wiley-VCH Verlag GmbH &
Co: Weinheim, Germany, 2008; pp 293-298. (g) Paterson, I.; Findlay,
A. D. Aust. J. Chem. 2009, 62, 624.
(6) For selected reviews on bioengineered polyketide construction, see: (a) Katz,
L. Chem. ReV. 1997, 97, 2557. (b) Khosla, C. Chem. ReV. 1997, 97, 2577.
(c) Khosla, C.; Keasling, J. D. Nat. ReV. Drug DiscoVery 2003, 2, 1019.
(d) McDaniel, R.; Welch, M.; Hutchinson, C. R. Chem. ReV. 2005, 105,
543. (e) Abe, I. Chem. Pharm. Bull. 2008, 56, 1505. (f) Horinouchi, S.
Curr. Opin. Chem. Biol. 2009, 13, 197. (g) Lu, D.; Williams, P. G.; Wang,
G. Biocatal. Pharm. Ind. 2009, 247.
(7) For selected reviews on C-C bond forming hydrogenation and transfer
hydrogenation, see: (a) Ngai, M.-Y.; Kong, J. R.; Krische, M. J. J. Org.
Chem. 2007, 72, 1063. (b) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische,
M. J. Acc. Chem. Res. 2007, 40, 1394. (c) Patman, R. L.; Bower, J. F.;
Kim, I. S.; Krische, M. J. Aldrichimica Acta 2008, 41, 95. (d) Shibahara,
F.; Krische, M. J. Chem. Lett. 2008, 37, 1102. (e) Bower, J. F.; Kim, I. S.;
Patman, R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34. (f)
Han, S. B.; Kim, I. S.; Krische, M. J. Chem. Commun. 2009, 7278.
(8) For reviews on oxo-polyene macrolide natural products, see: (a) Rych-
novsky, S. D. Chem. ReV. 1995, 95, 2021. (b) Thirsk, C.; Whiting, A.
J. Chem. Soc., Perkin Trans. 1 2002, 999. (c) Dougherty, J.; Zhou, M.;
O’Doherty, G. A. Chemtracts 2005, 18, 349. (d) Cereghetti, D. M.; Carreira,
E. M. Synthesis 2006, 914.
JA1082798
9
J. AM. CHEM. SOC. VOL. 132, NO. 44, 2010 15561