Organic Letters
Letter
Alkynes with Molecular Hydrogen. Chem. Commun. 2017, 53,
4612−4615.
ACKNOWLEDGMENTS
■
This work was supported by the Thousand Youth Talents Plan,
the National Natural Science Foundation of China (Grant
21602130), and Shanghai Jiao Tong University.
(6) For selected examples, see: (a) Obligacion, J. V.; Neely, J. M.;
Yazdani, A. N.; Pappas, I.; Chirik, P. J. Cobalt Catalyzed Z-Selective
Hydroboration of Terminal Alkynes and Elucidation of the Origin of
Selectivity. J. Am. Chem. Soc. 2015, 137, 5855−5858. (b) Guo, J.;
Cheng, B.; Shen, X.; Lu, Z. Cobalt-Catalyzed Asymmetric Sequential
Hydroboration/Hydrogenation of Internal Alkynes. J. Am. Chem. Soc.
2017, 139, 15316−15319.
REFERENCES
■
(1) (a) Yu, D.-G.; Li, B.-J; Shi, Z.-J. Exploration of New C−O
Electrophiles in Cross-Coupling Reactions. Acc. Chem. Res. 2010, 43,
1486−1495. (b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Nickel-Catalyzed
Cross-Couplings Involving Carbon−Oxygen Bonds. Chem. Rev. 2011,
111, 1346−1416.
(2) Alonso, F.; Beletskaya, I. P.; Yus, M. Transition-Metal-Catalyzed
Addition of Heteroatom-Hydrogen Bonds to Alkynes. Chem. Rev.
2004, 104, 3079−3159.
(7) For selected examples, see: (a) Mo, Z.; Xiao, J.; Gao, Y.; Deng,
L. Regio- and Stereoselective Hydrosilylation of Alkynes Catalyzed by
Three-Coordinate Cobalt(I) Alkyl and Silyl Complexes. J. Am. Chem.
Soc. 2014, 136, 17414−17417. (b) Guo, J.; Lu, Z. Highly Chemo-,
Regio-, and Stereoselective Cobalt-Catalyzed Markovnikov Hydro-
silylation of Alkynes. Angew. Chem., Int. Ed. 2016, 55, 10835−10838.
(c) Zuo, Z.; Yang, J.; Huang, Z. Cobalt-Catalyzed Alkyne Hydro-
silylation and Sequential Vinylsilane Hydroboration with Markovni-
kov Selectivity. Angew. Chem., Int. Ed. 2016, 55, 10839−10843.
(d) Guo, J.; Shen, X. Z.; Lu, Z. Regio- and Enantioselective Cobalt-
Catalyzed Sequential Hydrosilylation/Hydrogenation of Terminal
Alkynes. Angew. Chem., Int. Ed. 2017, 56, 615−618. (e) Teo, W. J.;
Wang, C.; Tan, Y. W.; Ge, S. Cobalt-Catalyzed Z-Selective
Hydrosilylation of Terminal Alkynes. Angew. Chem., Int. Ed. 2017,
56, 4328−4332.
(8) For a Co(I)−H intermediate, see: (a) Scheuermann, M. L.;
Johnson, E. J.; Chirik, P. J. Alkene Isomerization−Hydroboration
Promoted by Phosphine-Ligated Cobalt Catalysts. Org. Lett. 2015, 17,
2716−2719. (b) Zhang, L.; Huang, Z. Synthesis of 1,1,1-Tris-
(boronates) from Vinylarenes by Co-Catalyzed Dehydrogenative
Borylations−Hydroboration. J. Am. Chem. Soc. 2015, 137, 15600−
15603. (c) Yu, S.; Wu, C.; Ge, S. Cobalt-Catalyzed Asymmetric
Hydroboration/Cyclization of 1,6-Enynes with Pinacolborane. J. Am.
Chem. Soc. 2017, 139, 6526−6529.
(3) For selected examples by different transition metals, see: Ru:
(a) Rotem, M.; Shvo, Y. Addition of Carboxylic Acids to Alkynes
Catalyze by Ruthenium Complexes. Vinyl Ester Formation. Organo-
metallics 1983, 2, 1689−1691. (b) Goossen, L. J.; Paetzold, J.; Koley,
D. Regiocontrolled Ru-catalyzed Addition of Carboxylic Acids to
Alkynes: Practical Protocols for the Synthesis of Vinyl Esters. Chem.
Commun. 2003, 706−707. (c) Jeschke, J.; Gabler, C.; Lang, H.
Regioselective Formation of Enol Esters from the Ruthenium-
Catalyzed Markovnikov Addition of Carboxylic Acids to Alkynes. J.
Org. Chem. 2016, 81, 476−484. Pd: (d) Smith, D. L.; Goundry, W. R.
F.; Lam, H. W. Palladium-Catalyzed Hydroacyloxylation of Ynamides.
Chem. Commun. 2012, 48, 1505−1507. Rh: (e) Bianchini, C.; Meli,
A.; Peruzzini, M.; Zanobini, F.; Bruneau, C.; Dixneuf, P. H. Activation
of 1-Alkynes at Tripodal (Polyphosphine) Rhodium Systems.
Regioselective Synthesis of Enol Esters from 1-Alkynes and
Carboxylic Acids Catalyzed by Rhodium(I) Monohydrides. Organo-
metallics 1990, 9, 1155−1160. (f) Lumbroso, A.; Vautravers, N. R.;
Breit, B. Rhodium-Catalyzed Selective Anti-Markovnikov Addition of
Carboxylic Acids to Alkynes. Org. Lett. 2010, 12, 5498−5501. Re:
(g) Hua, R.; Tian, X. Re(CO)5Br-Catalyzed Addition of Carboxylic
Acids to Terminal Alkynes: A High Anti-Markovnikov and
Recoverable Homogeneous Catalyst. J. Org. Chem. 2004, 69, 5782−
5784. Au: (h) Chary, B. C.; Kim, S. Gold(I)-Catalyzed Addition of
Carboxylic Acids to Alkynes. J. Org. Chem. 2010, 75, 7928−7931.
(i) Wang, Y.; Wang, Z.; Li, Y.; Wu, G.; Cao, Z.; Zhang, L. A General
Ligand Design for Gold Catalysis Allowing Ligand-Directed Anti-
Nucleophilic Attack of Alkynes. Nat. Commun. 2014, 5, 3470.
(4) For selected recent reviews, see: (a) Cahiez, G.; Moyeux, A.
Cobalt-Catalyzed Cross-Coupling Reactions. Chem. Rev. 2010, 110,
1435−1462. (b) Pellissier, H.; Clavier, H. Enantioselective Cobalt-
Catalyzed Transformations. Chem. Rev. 2014, 114, 2775−2823.
(c) Gao, K.; Yoshikai, N. Low-Valent Cobalt Catalysis: New
Opportunities for C−H Functionalization. Acc. Chem. Res. 2014, 47,
1208−1219. (d) Gandeepan, P.; Cheng, C.-H. Cobalt Catalysis
Involving π Components in Organic Synthesis. Acc. Chem. Res. 2015,
48, 1194−1206. (e) Chirik, P. J. Iron- and Cobalt-Catalyzed Alkene
Hydrogenation: Catalysis with Both Redox-Active and Strong Field
(9) For a neutral and weakly acidic H−P addition reaction, see:
(a) Ohmiya, H.; Yorimitsu, H.; Oshima, K. Cobalt-Catalyzed Syn
Hydrophosphination of Alkynes. Angew. Chem., Int. Ed. 2005, 44,
2368−2370. For a Co-catalyzed hydration reaction in the presence of
extra acid, see: (b) Tachinami, T.; Nishimura, T.; Ushimaru, R.;
Noyori, R.; Naka, H. Hydration of Terminal Alkynes Catalyzed by
Water-Soluble Cobalt Porphyrin Complexes. J. Am. Chem. Soc. 2013,
135, 50−53.
(10) For selected examples, see: (a) Zhang, G.; Scott, B. L.; Hanson,
S. K. Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of
CC, CO, and CN Bonds. Angew. Chem., Int. Ed. 2012, 51,
12102−12106. (b) Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson,
S. K. Understanding the Mechanisms of Cobalt-Catalyzed Hydro-
genation and Dehydrogenation Reactions. J. Am. Chem. Soc. 2013,
135, 8668−8681. (c) Obligacion, J. V.; Semproni, S. P.; Chirik, P. J.
Cobalt-Catalyzed C−H Borylation. J. Am. Chem. Soc. 2014, 136,
4133−4136. (d) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner,
Y.; Ben-David, Y.; Milstein, D. Selective N-Formylation of Amines
with H2 and CO2 Catalyzed by Cobalt Pincer Complexes. ACS Catal.
2017, 7, 2500−2504. (e) Obligacion, J. V.; Semproni, S. P.; Pappas, I.;
Chirik, P. J. Cobalt-Catalyzed C(sp2)−H Borylation: Mechanistic
Insights Inspire Catalyst Design. J. Am. Chem. Soc. 2016, 138, 10645−
10653. For NNN ligands, see: (f) Bowman, A. C.; Milsmann, C.;
Hojilla Atienza, C. C.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J.
Synthesis and Molecular and Electronic Structures of Reduced
Bis(imino)pyridine Cobalt Dinitrogen Complexes: Ligand versus
Metal Reduction. J. Am. Chem. Soc. 2010, 132, 1676−1684.
(g) Monfette, S.; Turner, Z. R.; Semproni, S. P.; Chirik, P. J.
Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for
Asymmetric Alkene Hydrogenation. J. Am. Chem. Soc. 2012, 134,
4561−4564. (h) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. Cobalt-
Catalyzed Enantioselective Hydroboration of 1,1-Disubstituted Aryl
Alkenes. J. Am. Chem. Soc. 2014, 136, 15501−15504. (i) Guo, J.;
Chen, J.; Lu, Z. Cobalt-catalyzed Asymmetric Hydroboration of Aryl
Ketones with Pinacolborane. Chem. Commun. 2015, 51, 5725−5727.
(j) Krautwald, S.; Bezdek, M. J.; Chirik, P. J. Cobalt-Catalyzed 1,1-
̈
Ligands. Acc. Chem. Res. 2015, 48, 1687−1695. (f) Rose, P.; Hilt, G.
Cobalt-Catalysed Bond Formation Reactions; Part 2. Synthesis 2016,
48, 463−492. (g) Moselage, M.; Li, J.; Ackermann, L. Cobalt-
Catalyzed C−H Activation. ACS Catal. 2016, 6, 498−525.
(5) For selected examples, see: (a) Fu, S.; Chen, N.-Y.; Liu, X.; Shao,
Z.; Luo, S.-P.; Liu, Q. Ligand-Controlled Cobalt-Catalyzed Transfer
Hydrogenation of Alkynes: Stereodivergent Synthesis of Z- and E-
Alkenes. J. Am. Chem. Soc. 2016, 138, 8588−8594. (b) Tokmic, K.;
Fout, A. R. Alkyne Semihydrogenation with a Well-Defined
Nonclassical Co−H2 Catalyst: A H2 Spin on Isomerization and E-
Selectivity. J. Am. Chem. Soc. 2016, 138, 13700−13705. (c) Chen, F.;
Kreyenschulte, C.; Radnik, J.; Lund, H.; Surkus, A.-E.; Junge, K.;
Beller, M. Selective Semihydrogenation of Alkynes with N-Graphitic-
Modified Cobalt Nanoparticles Supported on Silica. ACS Catal. 2017,
7, 1526−1532. (d) Chen, C.; Huang, Y.; Zhang, Z.; Dong, X.-Q.;
Zhang, X. Cobalt-catalyzed (Z)-selective Semihydrogenation of
E
Org. Lett. XXXX, XXX, XXX−XXX