10.1002/anie.201911012
Angewandte Chemie International Edition
COMMUNICATION
Du, P. Su, X.-Y. Liu, X.-Z. Shu, J. Am. Chem. Soc. 2019, 141, 7637-
7643; j) H. Yoon, A. D. Marchese, M. Lautens, J. Am. Chem. Soc. 2018,
140, 10950-10954; k) J. Zhang, Z.-M. Zhang, B. Xu, L. Wu, Y. Wu, Y.
Qian, L. Zhou, Y. Liu, Angew. Chem. Int. Ed. 10.1002/anie.201907840;
Angew. Chem. 10.1002/ange.201907840.
[9]
There are only single examples of dicarbofunctionalizations of
trisubstituted olefins without systematic studies: a) G. Fournet, G. Balme,
J. Gore, Tet. Lett. 1987, 28, 4533-4536; b) T. Xu, G. Dong, Angew. Chem.
Int. Ed. 2012, 51, 7567-7571; Angew. Chem. 2012, 124, 7685-7689; c)
O. F. Jeker, A. G. Kravina, E. M. Carreira, Angew. Chem. Int. Ed. 2013,
52, 12166-12169; Angew. Chem. 2013, 125, 12388-12391; d) L. Souillart,
E. Parker, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 3001-3005;
Angew. Chem. 2014, 126, 3045-3049; e) X. Wang, S. Wang, W. Xue, H.
Gong, J. Am. Chem. Soc. 2015, 137, 11562-1165; f) X. Wang, G. Ma, Y.
Peng, C. E. Pitsch, B. J. Moll, T. D. Ly, X. Wang, H. Gong, J. Am. Chem.
Soc. 2018, 140, 14490-14497.
[4]
[5]
Radical intermediates are typically postulated for methods that tolerate
both types of electrophiles. For example, see 3f.
C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus,
Angew. Chem. Int. Ed. 2012, 51, 5062-5085; Angew. Chem. 2012, 124,
5150-5174.
[6]
[7]
For relevant reviews, see: a) Q. Lium X. Dong, J. Li, J. Xiao, Y. Dong, H.
Liu, ACS Catal. 2015, 5, 6111-6137; b) P. Chuentragool, D. Kurandina,
V. Gevorgyan, Angew. Chem. Int. Ed. 2019, 58, 11586-11598; Angew.
Chem. 2019, 131, 11586-11598; c) M. R. Kwiatkowski, E. J. Alexanian,
Acc. Chem. Res. 2019, 52, 1134-1144.
[10] For selected examples, see: a) J. T. Mohr, D. C. Behenna, A. M. Harned,
B. M. Stoltz, Angew. Chem. Int. Ed. 2005, 44, 6924-6927; Angew. Chem.
2005, 117, 7084-7087; b) J. M. Medina, J. Moreno, S. Racine, S. Du, N.
K. Garg, Angew. Chem. Int. Ed. 2017, 56, 6567-6571; Angew. Chem.
2017, 129, 6667-6671. c) D. N Primer, G. A. Molander, J. Am. Chem.
Soc. 2017, 139, 9847-9850; d) S. A. Green, S. Vásquez-Céspedes, R. A.
Shenvi, J. Am. Chem. Soc. 2018, 140, 11317-11324; e) T.-G. Chen, H.
Zhang, P. K. Mykhailiuk, R. R. Merchant, C. A. Smith, T. Qin, P. S. Baran,
Angew. Chem. Int. Ed. 2019, 58, 2454-2458; Angew. Chem. 2019, 131,
2476-2480; f) S. A. Green, T. R. Huffman, R. O. McCourt, V. van der Puyl,
R. A. Shenvi, J. Am. Chem. Soc. 2019, 141, 7709-7714. See also
references 9e and 9f.
a) K. S. Bloome, R. L. McMahen, E. J. Alexanian, J. Am. Chem. Soc.
2011, 133, 20146-20148; b) C. M McMahon, E. J. Alexanian, Angew.
Chem. Int. Ed. 2014, 53, 5974-5977; Angew. Chem. 2014, 126, 6084-
6087; c) Y. Zhou, J. Zhou, Chem. Commun. 2014, 50, 3725-3728 d) A.
R. O. Venning, M. R. Kwiatkowski, J. E. Roque Peña, B. C. Lainhart, A.
A. Guruparan, E. J. Alexanian, J. Am. Chem. Soc. 2017, 139, 11595-
11600;
[8]
a) M. Parasram, P. Chuentragool, D. Sarkar, V. Gevorgyan, J. Am. Chem.
Soc. 2016, 138, 6340-6343; b) M. Parasram, P. Chuentragool, Y. Wang,
Y. Shi, V. Gevorgyan, J. Am. Chem. Soc. 2017, 139, 14857-14860; c) D.
Kurandina, M. Parasram, V. Gevorgyan, Angew. Chem. Int. Ed. 2017,
56, 14212-14216; Angew. Chem. 2017, 129, 14400-14404; d) W.-J.
Zhou, G.-M. Cao, G. Shen, X.-Y. Zhu, Y.-Y. Gui, J.-H. Ye, L. Sun, L.-L.
Liao, J. Li, D.-G. Yu, Angew. Chem. Int Ed. 2017, 56, 15638-15687;
Angew. Chem. 2017, 129, 15889-15893; e) G.-Z. Wang, R. Shang, W.-
M. Cheng, Y. Fu, J. Am. Chem. Soc. 2017, 139, 18307-18312; f) G.-Z.
Wang, R. Shang, Y. Fu, Org. Lett. 2018, 20, 888-891; g) M. Koy, F.
Sandfort, A. Tlahuext-Aca, L. Quach, C. G. Daniliuc, F. Glorius, Chem.
Eur. J. 2018, 24, 4552-4555; h) W.M. Cheng, R. Shang, Y. Fu, Nat.
Commun. 2018, 9, 5215; i) R. Kancherla, K. Muralirajan, B. Maity, C. Zhu,
P. E. Krach, L. Cavallo, M. Rueping, Angew. Chem. Int. Ed. 2019, 58,
3412-3416; Angew. Chem. 2019, 131, 3450-3454; j) P. Chuentragool, D.
Yadagiri, T. Morita, S. Sarkar, M. Parasram, Y. Wang, V. Gevorgyan,
Angew. Chem. Int. Ed. 2019, 58, 1794-1798; Angew. Chem. 2019, 131,
1808-1812.
[11] L. Pitzer, F. Schäfers, F. Glorius, Angew. Chem. Int. Ed. 2019, 58, 8572-
8576; Angew. Chem. 2019, 131, 8660-8664.
[12] J. A. Bull, R. A. Croft, O. A. Davis, R. Doran, K. F. Morgan, Chem. Rev.
2016, 116, 12150-12233.
[13] K. W. Quasdorf, L. E. Overman, Nature 2014, 516, 181-191.
[14] CCDC 1949396 - 1949400 contain the supplementary crystallographic
data for this paper. These data are provided free of charge by The
Cambridge Crystallographic Data Centre.
[15] a) P. Morales, P. H. Reggio, N. Jagerovic, Front. Pharmacol. 2017, 8,
422. b) M. Yamashita, N. Ohta, I. Kawasaki, S. Ohta, Org. Lett. 2001, 3,
1359-1362.
[16] K. Furuta, Y. Kawai, Y. Mizuno, Y. Hattori, H. Koyama, Y. Hirata, Biorg.
Med. Chem. Lett. 2017, 27, 4457-4461.
This article is protected by copyright. All rights reserved.