For example, Villie´ras10i reported a synthesis of γ-lactams
with two examples, by addition of ꢀ-functional crotylzinc
reagents to chiral N-R-aminoesters in 60% yield, 92% de,
and in 86% yield, 100% de, respectively. However, more
steps were needed including reduction and acidic cleavage
to remove the auxiliary for achieving the final products.
Despite the fact that considerable efforts have been made, a
more efficient, reliable, and convenient route to R-methylene-
γ-lactams is still in high demand.
Scheme 1
.
Asymmetric Allylation Using Different Allyl
Regents
Previously, we have reported our achievements about the
aza-Barbier reaction for asymmetric synthesis of various
important chiral amines.19 For example, we reported a highly
diastereoselective synthesis of chiral homoallylic amines by
Zn-mediated allylation of chiral N-tert-butanesulfinyl imines
at room temperature (Scheme 1, 2a, R1 ) R2 ) H). By
simply turning the reaction conditions, a remarkable stereo-
control was provided, affording the products R/S-3a in good
yields and with up to 99:1 dr.19a Moreover, when 3-ben-
zoyloxyallyl bromide (Scheme 1, 2b, R1 ) OBz, R2 ) H)
or 3-arylallyl bromide (Scheme 1, 2c, R1 ) Ar, R2 ) H)
was used, a direct R-hydroxyallylation or cinnamylation
of imines 1 in a highly stereoselective manner was
observed.19b-d In the meantime, a dramatic LiCl effect was
found on the stereocontrol so that DMF could be used as
solvent to replace the unpleasant HMPA.19d In our continu-
ous interest to explore the utilities of chiral sulfinyl auxiliary,
we envisioned whether it was possible to use ꢀ,γ-disubsti-
tuted allyl bromide (Scheme 1, 2e, R1 ) Me, R2 ) CO2Et)
for setting up another interesting class of homoallylic amines
3 with two adjacent chiral centers simultaneously and which
by subjecting to further cyclization would yield the chiral
R-methylene-γ-lactams 5 in a one-pot varient. In this work,
we disclose our success on such an efficient synthesis with
high yields and excellent diastereo- and enantioselectivities.
Our initial investigation commenced with the reaction
between the model substrates (R)-N-tert-butanesulfinyl imine
1a and ethyl 2-(bromomethyl)acrylate (Table 1, 2d, R1 ) H,
Table 1. Initial Attempts in Reaction Conditions Screening
(10) (a) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc.
2004, 126, 6230. (b) Reddy, L. R.; Fournier, J.-F.; Subba Reddy, B. V.;
Corey, E. J. J. Am. Chem. Soc. 2005, 127, 8974. (c) Ooi, H.; Ishibashi, N.;
Iwabuchi, Y.; Ishihara, J.; Hatakeyama, S. J. Org. Chem. 2004, 69, 7765.
(d) Lettan, R. B., II; Woodward, C. C.; Scheidt, K. A. Angew. Chem., Int.
Ed 2008, 47, 2294. (e) Krawczyk, H.; Albrecht, L.; Wojciechowski, J.;
Wolf, W. M.; Krajewska, U.; Rozalski, M. Tetrahedron 2008, 42, 6307.
(f) Alami, N. E.; Belaud, C.; Ville´ras, J. Tetrahedron Lett. 1987, 28, 59.
(g) Dembele, Y. A.; Belaud, C.; Hitchcock, P.; Villie´ras, J. Tetrahedron:
Asymmetry 1992, 3, 351. (h) Dembele, Y. A.; Belaud, C.; Villie´ras, J.
Tetrahedron: Asymmetry 1992, 3, 511. (i) Nyzam, V.; Belaud, C.;
Zammattio, F.; Villie´ras, J. Tetrahedron: Asymmetry 1996, 7, 1835. (j)
Choudhury, P. K.; Foubelo, F.; Yus, M. J. Org. Chem. 1999, 64, 3376. (k)
Tanaka, K.; Yoda, H.; Kaji, A. Synthesis 1985, 84. (l) Beji, F.; Lebreton,
J.; Villie´ras, J.; Amri, H. Tetrahedron 2001, 57, 9959. (m) Lee, K. Y.;
Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 2007.
solvent and
additiveb
Zn/2d
entrya
time (h) (equiv) yield (%)c de (%)d
1
2
3
4
5
6
7
8
5 mL of THFe
5 mL of DMFe
5 mL of DMF
5 mL of HMPAf
2 mL of DMF
1 mL of DMF
0.5 mL of DMF
5 mL of DMF
1 mL of DMF
1 mL of DMF
1 mL of DMFg
8
11
11
11
12
12
11
18
75
11
11
2
2
2
2
2
2
2
2
2
3
3
87
94
48
23
76
81
86
45
79
94
88
-68
52
96
93
99
99
96
96
97
97
98
(11) (a) Mackiewicz, P.; Furstoss, R.; Wage&, B.; Cote, R.; Lessard, J.
J. Org. Chem. 1978, 43, 3746. (b) Callier-Dublanchet, A. C.; Quiclet-Sire,
B.; Zard, S. Z. Tetrahedron Lett. 1995, 36, 8791.
(12) (a) Masse, C. E.; Panek, J. S. Chem. ReV. 1995, 95, 1293. (b)
Groaning, M. D.; Brengel, G. P.; Meyers, A. I. J. Org. Chem. 1998, 63,
5517. (c) Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434.
(d) Romero, A.; Woerpel, K. A. Org. Lett. 2006, 8, 2127. (e) Sun, P.-P.;
Chang, M. Y.; Chiang, M. Y.; Chang, N. C. Org. Lett. 2003, 5, 1761. (f)
Ng, P. Y.; Masse, C. E.; Shaw, J. T. Org. Lett. 2006, 8, 3999.
(13) (a) Doyle, M. P.; Forbes, D. C. Chem. ReV. 1998, 98, 911. (b)
Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103, 2861. (c) Taber,
D. F. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, U.K., 1991; Vol. 3, p 1045. (d) Choi, M. K. W.;
Yu, W. Y.; Che, C. M. Org. Lett. 2005, 7, 1081. (e) Zhou, C. Y.; Che,
C. M. J. Am. Chem. Soc. 2007, 129, 5828.
9
10
11
a Reaction was performed with 0.2 mmol of 1a, Zn/2d, and additive in
dry solvent at rt. b 2 equiv of LiCl was used as additive unless otherwise
d
noted. c Isolated yield. Determined by H NMR of the product. 3d was
converted to the lactam to determine its configuration and confirm its
diastereomeric excess (see Supporting Information). e Without any additive.
f 10 µL of H2O was used as additive. g None-predried DMF was used.
1
(14) (a) Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2005, 70, 3369.
(b) Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P. Org. Lett. 2005,
7, 3981. (c) Park, J.-H.; Ha, J. R.; Oh, S. J.; Kim, J. A.; Shin, D.-S.; Won,
T. J.; Lam, Y. F.; Ahn, C. Tetrahedron Lett. 2005, 46, 1755.
R2 ) CO2Et). According to our previous reports, different kinds
of solvents were tested in this reation. Unfortunately, the
diastereomeric excesses of products were not satisfactory when
THF and DMF were used as solvents (Table 1, entries 1 and
2). When DMF was employed in combination with 2 equiv of
(15) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131.
(16) Comesse, S.; Sanselme, M.; Da¨ıch, A. J. Org. Chem. 2008, 73,
5566.
(17) Fernandes, R. A.; Yamamoto, Y. J. Org. Chem. 2004, 69, 3562.
Org. Lett., Vol. 12, No. 22, 2010
5155