Recent studies on Rh(III)-catalyzed oxidative C-C, C-N,
and C-O coupling reactions by Satoh and Miura, Fagnou,
Jones, Glorius, and Zhang has revealed that in most cases
proximal heteroatom-directing groups such as amide,6,10
pyridyl,9a,11 imine,12 hydroxyl,13 and carboxyl9b,14 are
important both to facilitate the activation of C(sp2)-H bonds
and to direct the selectivity to the ortho position. Considering
that amides are readily available and amide functionality
offers sufficient assistance, oxidative functionalization of
acetanilides has been well studied.5d,6,10a,15 In contrast to
the specific selectivity of C-H functionalization in aceta-
nilides, C-H functionalization of N-aryl benzamides may
be complicated by chemoselectivity in terms of which arene
undergoes C-H cleavage, and this substrate was not studied
until very recently by us16 and others in Rh catalysis,10d,e
although Pd-catalyzed C-H activation of N-aryl amides has
been reported to occur at the carboxylic acid unit.17 As a
continuation of our studies, we now report C-H olefination
of such benzamides at the C-aryl ring. More importantly,
when electron-poor olefins are utilized, the coupled products
may further undergo in situ Michael addition to give
γ-lactams.
Scheme 1. Rh(III)-Catalyzed Tandem Oxidative
Olefination-Michael Reactions between Benzamides and
Alkenesa b
,
a Reaction conditions: benzamide, olefin (2 equiv), Ag2CO3 (2 equiv),
[RhCp*Cl2]2 (4 mol %), MeCN (5 mL), sealed tube under nitrogen, 110
°C, 12 h. b 2a ) benzyl acrylate; 2b ) ethyl acrylate; 2c ) methyl acrylate;
2d ) butyl acrylate; 2e ) tert-butyl acrylate; 2f ) acrylonitrile; 2g ) ethyl
vinyl ketone.
higher temperatures (125 °C) but with lower catalyst loading
(2 mol %) only gave lower yields (64%). This reaction is
proposed to go by the oxidative olefination of the ortho C-H
bond in the C-aryl ring, followed by intramolecular hy-
droamination (Michael addition).3a,f,9b The scope of this
reaction is outlined in Scheme 1. Benzamides with electron-
donating or -withdrawing groups afforded lactams in high
isolated yield. Furthermore, N-o-tolyl benzamide (1e) also
reacts to give the coupled product in 89% isolated yield,
indicating tolerance of the steric bulk in the N-aryl group. It
is noteworthy that the halide substituent (1h) can be tolerated
without any Heck coupling byproduct being detected, which
highlights an advantage of rhodium catalysis compared to
palladium catalysis. To examine the regioselectivity of this
reaction, substrates 1i and 1j were allowed to react under
the standard conditions to give 3i and 3j, respectively, where
C-H functionalization occurred at the less sterically hindered
We initiated our investigation with the coupling between
benzamide 1a and benzyl acrylate. Gratifyingly, the use of
[Cp*RhCl2]2 as the single catalyst and Ag2CO3 as the oxidant
in MeCN or acetone yielded lactam 3aa (110 °C, sealed tube,
12 h) in 94% yield (Scheme 1). Reactions performed at
(10) (a) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou,
K. J. Am. Chem. Soc. 2008, 130, 16474. (b) Guimond, N.; Gouliaras, C.;
Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (c) Rakshit, S.; Patureau,
F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585. (d) Hyster, T. K.;
Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565. (e) Mochida, S.; Umeda,
(13) Uto, T.; Shimizu, M.; Ueura, K.; Tsurugi, H.; Satoh, T.; Miura,
M. J. Org. Chem. 2008, 73, 298.
(14) (a) Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2009, 74, 3478. For a recent review, see: (b) Satoh., T.; Ueura, K.; Miura,
M. Pure Appl. Chem. 2008, 80, 1127.
N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744
.
(15) (a) Phipps, R. J.; Gaunt, M. Science 2009, 323, 1593. (b) Lyons,
T. W.; Sanford, M. S. Chem. ReV. 2010, 110, 1147. (c) Yang, S.; Li, B.;
Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066. (d) Zaitsev, V. G.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 4156.
(11) (a) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2008, 47, 4019. (b) Li, L.; Brennessel, W. W.; Jones, W. D. J. Am.
Chem. Soc. 2008, 130, 12414. (c) Guan, Z.-H.; Spinella, S. M.; Yu, S.;
Liang, Y.-M.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 729. (d) Morimoto,
(16) Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R. H.; Li, X. J. Org.
Chem. DOI: 10.1021/jo101596d.
K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2068
.
(12) (a) Guimond, N.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 12050.
(b) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem.
Commun. 2009, 5141.
(17) (a) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
(b) Wasa, M.; Worrell, B. T.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49,
1275.
Org. Lett., Vol. 12, No. 23, 2010
5431