diastereoselectivity (entries 2 and 3). In contrast, a Cu(I) salt
such as Cu(CH3CN)4PF6 proved to be highly exo diastereo-
selective, especially in combination with bisoxazoline ligands
4, 6 and 7 (entries 6-8). Pleasingly, a nearly complete
diastereoselectivity and very high enantioselectivity (97%
ee) was achieved with the tetraphenyl bisoxazoline 7
(85% yield, entry 8). The cycloaddition can be also per-
formed using a lower catalyst loading (3-5 mol % of
Cu(CH3CN)4PF6 and ligand 7), albeit with a significant
erosion of the enantioselectivity (entry 9).
Scheme 1
Table 1. Reaction Conditions for the Model Reaction
ligands provided the best results9 (Table 1). The reaction
using Cu(OTf)2 and ligand 3 (10 mol %) as catalyst system,
in the presence of Et3N as base (CH2Cl2, rt), afforded a
mixture of exo/endo pyrrolidines 2a with low yield and
enantioselectivity (entry 1). Better enantioselectivities were
obtained with bisoxazolines 5 and 7, albeit with poor
entry metal source L* exo/endoa yield(%)b ee (exo)(%)c
1
2
3
4
5
6
7
8
9
Cu(OTf)2
Cu(OTf)2
Cu(OTf)2
3
5
7
3
5
4
6
7
7
34/66
40/60
65/35
66/34
75/25
>98/<2
>98/<2
>98/<2
>98/<2
30
45
60
68
72
70
62
51
77
95
20
6
40
50
d
CuPF6
CuPF6
CuPF6
CuPF6
d
d
(3) For selected recent references, Cu-catalysts, see: (a) Robles-Mach´ın,
R.; Gonza´lez-Esguevillas, M.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2010,
75, 233–236. (b) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato,
H. J. Am. Chem. Soc. 2010, 132, 5338–5339. (c) Kim, H. Y.; Shih, H.-Y.;
Knabe, W. E.; Oh, K. Angew. Chem., Int. Ed. 2009, 48, 7420–7423. (d)
Filippone, S.; Maroto, E. E.; Mart´ın-Domenech, A.; Suarez, M.; Mart´ın,
N. Nature Chem. 2009, 1, 578–582. (e) Hernandez-Toribio, J.; Go´mez
Arraya´s, R.; Mart´ın-Matute, B.; Carretero, J. C. Org. Lett. 2009, 11, 393–
396. (f) Lo´pez-Pe´rez, A.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed.
2009, 48, 340–343. (g) Lo´pez-Pe´rez, A.; Adrio, J.; Carretero, J. C. J. Am.
Chem. Soc. 2008, 130, 10084–10085. (h) Wang, C.-J.; Liang, G.; Xue, Z.-
Y.; Gao, F. J. Am. Chem. Soc. 2008, 130, 17250–17251. (i) Fukuzawa,
S.-I.; Oki, H. Org. Lett. 2008, 10, 1747–1750. (j) Yan, X.-X.; Peng, Q.;
Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem.,
Int. Ed. 2006, 45, 1979–1983. Ag-catalysts: (k) Shimizu, K.; Ogata, K.;
Fukuzawa, S.-i. Tetrahedron Lett. 2010, 51, 5068–5070. (l) Oura, I.;
Shimizu, K.; Ogata, K.; Fukuzawa, S.-i. Org. Lett. 2010, 12, 1752–1755.
(m) Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.-Y.; Wang, C.-J.
Chem. Commun. 2010, 46, 1727–1729. (n) Yu, S.-B.; Hu, X.-P.; Deng, J.;
Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. Tetrahedron: Asymmetry 2009, 20,
621–625. (o) Wang, C.-J.; Xue, Z.-Y.; Liang, G.; Zhou, L. Chem. Commun.
2009, 2905–2907. (p) Na´jera, C.; de Gracia Retamosa, M.; Sansano, J. M.;
de Cozar, J. M.; Coss´ıo, F. P. Tetrahedron: Asymmetry 2008, 19, 2913–
2933. (q) Na´jera, C.; de Gracia Retamosa, M.; Sansano, J. M. Angew. Chem.,
Int. Ed. 2008, 47, 6055–6058. Zn-catalysts (r) Dogan, O.; Koyuncu, H.;
Garner, P.; Bulut, A.; Youngs, W. J.; Panzner, M. Org. Lett. 2006, 8, 4687–
4690. Ni-catalysts (s) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew.
Chem., Int. Ed. 2010, 49, 7895–7898. (t) Shi, J.-W.; Zhao, M.-X.; Lei, Z.-
Y.; Shi, M. J. Org. Chem. 2008, 73, 305–308. Ca-catalysts (u) Tsubogo,
T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc.
2008, 130, 13321–13332.
d
d
CuPF6
85
97
d
CuPF6
76e (66)f
91e (88)f
a Determined by 1H NMR. b Isolated yield. c Determined by HPLC.
d CuPF6 ) Cu(CH3CN)4PF6. e 5 mol % of catalyst. f 3 mol % of catalyst.
Interestingly, no reaction was observed under the optimal
conditions shown in entry 8 when the phenyl, 3-pyridyl or
4-pyridyl substituted imines (1b-d) were used instead of
1a, proving the key role of the 2-pyridyl unit as efficient
activating group in the formation of the metalated azomethine
intermediate10 (Scheme 2).
Given the high reactivity of the phenyl imine 1a, we next
examined the scope of this asymmetric transformation with
regard to the substitution at the imine11 (Table 2). In all cases
only the exo isomer was isolated (62-86% yield) and an
excellent enantiocontrol was achieved from aryl and het-
eroaryl substituted imines regardless of the nature of the
substituents (89-97% ee, entries 1-7). As expected, the
(4) For selected organocatalytic asymmetric versions of this reaction,
see: (a) Liu, Y.-K.; Liu, H.; Du, W.; Yue, L.; Chen, Y.-C. Chem.sEur. J.
2008, 14, 9873–9877. (b) Xue, M.-X.; Zhang, X.-M.; Gong, L.-Z. Synlett
2008, 691–694. (c) Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. J. Am. Chem.
Soc. 2008, 130, 5652–5654. (d) Ibrahem, I.; R´ıos, R.; Vesely, J.; Co´rdova,
A. Tetrahedron Lett. 2007, 48, 6252–6257. (e) Vicario, J. L.; Reboredo,
S.; Bad´ıa, D.; Carrillo, L. Angew. Chem., Int. Ed. 2007, 46, 5168–5170. (f)
Alemparte, C.; Blay, G.; Jørgensen, K. A. Org. Lett. 2005, 7, 4569–4572.
(5) (a) Yamashita, Y.; Guo, X.-X.; Takashita, R.; Kobayashi, S. J. Am.
Chem. Soc. 2010, 132, 3262–3263. (b) Robles-Mach´ın, R.; Alonso, I.; Adrio,
J.; Carretero, J. C. Chem.sEur. J. 2010, 16, 5286–5291.
(8) See for example: (a) Xu, D.-Z.; Shi, S.; Wang, Y. Eur. J. Org. Chem.
2009, 4848–4853. (b) Comba, P.; Lang, C.; Lopez de Laorden, C.;
Muruganantham, A.; Rajaraman, G.; Wadepohl, H.; Zajaczkowski, M.
Chem.sEur. J. 2008, 14, 5313–5328. (c) Ishii, T.; Fujioka, S.; Sekiguchi,
Y.; Kotsui, H. J. Am. Chem. Soc. 2004, 126, 9558–9559. (d) Dickerson,
T. J.; Janda, K. D. J. Am. Chem. Soc. 2002, 124, 320–321.
(6) For the non asymmetric thermal 1,3-dipolar cycloaddition of N-(2-
pyridylmethyl)imines, see: Grigg, R.; Donegan, G.; Gunaratne, H. Q. N.;
Kennedy, D. A.; Malone, J. F.; Sridharan, V.; Thianatanagul, S. Tetrahedron
1989, 45, 1723–1746.
(9) See Supporting Information for catalyst optimization studies.
(10) For a recent example on the use of the 2-pyridine unit as activating
group in asymmetric metal catalyzed reactions, see: Rupnicki, L.; Saxena,
A.; Lam, H. W. J. Am. Chem. Soc. 2009, 131, 10386–10387.
(7) Stohler, R.; Wahl, F.; Pfaltz, A. Synthesis 2005, 1431–1436.
Org. Lett., Vol. 12, No. 24, 2010
5609