M. F. Sansone et al. / Tetrahedron Letters 51 (2010) 6031–6033
6033
Table 2
Yields and melting points for the synthesis of monoacylaminals from morpholine aminals of benzaldehyde derivatives and benzamide derivatives
Benzamide
Aminal
Yielda (%)
Melting pointb (°C)
Lit Mpt. (°C)
Benzamide
Aminal
Yielda (%)
Melting pointb (°C)
Lit. Mpt. (°C)
H
4-NO2
4-Cl
3-NO2
4-SCH3
4-SCH3
4-SCH3
4-Cl
4-Cl
4-Cl
4-Cl
4-Cl
4-Cl
3-Cl
3-Cl
3-Cl
3-Cl
3-Cl
H
64
89
61
56
69
37
50
97
47
47
69
24
49
50
33
62
43
49
34
54
165–6
158–60
235–8
152–3
132–6
176–9
158–9
159–61
148–52
132–4
114–20
161–2
165–6
150–1
171–3
161–4
113–5
140–3
134–6
166–8
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4-NO2
4-Cl
3-Cl
H
4-CH3
3-CH3
4-NO2
3-NO2
4-Cl
H
3-CH3
4-NO2
4-Cl
3-Cl
H
4-CH3
3-CH3
4-Cl
H
4-CH3
4-CH3
4-CH3
4-CH3
4-CH3
4-CH3
3-CH3
3-CH3
3-CH3
3-CH3
3-CH3
4-OCH3
4-OCH3
4-OCH3
4-OCH3
4-OCH3
4-OCH3
3-OCH3
3-OCH3
H
59
57
35
78
27
49
66
36
41
32
40
67
65
25
44
32
43
51
60
67
116–8
154–6
148–9
158–60
140–2
143–6
105–8
139–42
98–100
136–8
161–3
135–8
140–2
140–2
132–4
145–6
125–8
171–3
151–2
160–2
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
H
4-NO2
3-NO2
4-Cl
H
4-CH3
3-CH3
4-NO2
4-CF3
4-Cl
H
3-CH3
4-NO2
3-NO2
4-Cl
4-CH3
3-CH3
H
H
H
H
—
—
—
H
166–7c
a
b
c
Based upon 1–3 independent determinations.
All melting points were determined using a commercial apparatus and are uncorrected.
Ref. 16a.
4. (a) Jacobson Ann. Chim. 1871, 157, 245; (b) Pinner Ann. Chim. 1875, 179, 40.
5. (a) Young, S. D.; Tamburini, P. P. J. Am. Chem. Soc. 1989, 111, 1933–1934; (b)
Eipper, B. A.; Mains, R. E.; Glembotski, C. C. Proc. Natl. Acad. Sci. U.S.A. 1983, 80,
5144–5148; (c) Bradbury, A. F.; Finnie, M. D. A.; Smyth, D. G. Nature 1982, 298,
686–688.
O
O
O
N
N
+
6. (a) McIninch, J. K.; McIninch, J. D.; May, S. W. J. Biol. Chem. 2003, 278, 50091–
50100; (b) Takada, Y.; Noguchi, T. Biochem. J. 1986, 235, 391–397.
N
N
O
O
H
7. (a) Chung, F. L.; Nath, R. G.; Nagao, M.; Nishikawa, A.; Zhou, G. D.; Randerath, K.
Mutat. Res. 1999, 424, 71–81; (b) Marnett, L. J. Mutat. Res. 1999, 424, 83–95; (c)
Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. Mutat. Res. 1999, 424, 59–69.
8. (a) Vela, M.; Kohn, H. J. Org. Chem. 1992, 57, 5223–5231; (b) Miyoshi, T.; Miyari,
N.; Aoki, H.; Kohsaka, M.; Sakai, H.; Imanaka, H. J. Antibiot. 1972, 25, 569–575;
(c) Miyamura, S.; Ogasawara, N.; Otsuka, H.; Niwayama, S.; Takana, H.; Take, T.;
Uchiyama, T.; Ochiai, H.; Abe, K.; Koizumi, K.; Asao, K.; Matuski, K.; Hoshino, T.
J. Antibiot. 1972, 25, 610–612.
9. (a) Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada, H. Org.
Lett. 2002, 4, 2845–2848; (b) Nakai, R.; Ogawa, H.; Asai, A.; Ando, K.; Agatsuma,
T.; Matsumiya, S.; Akinaga, S.; Yamashita, Y.; Mizukami, T. J. Antibiot. 2000, 53,
294–296; (c) Suzuki, S.; Hosoe, T.; Nozawa, K.; Kawai, K.; Yaguchi, T.; Udagawa,
S. J. Nat. Prod. 2000, 63, 768–772; (d) Singh, S. B.; Goetz, M. A.; Jones, E. T.; Bills,
G. F.; Giacobbe, R. A.; Herranz, L.; Stevensmiles, S.; Williams, D. L. J. Org. Chem.
1995, 60, 7040–7042; (e) Kakeya, H.; Takahashi, I.; Okada, G.; Isono, K.; Osada,
H. J. Antibiot. 1995, 48, 733–735.
N
H
R
O
N
O
O
O
O
N
+
+
N
H
R
N
H
N
R
H
Scheme 4. Proposed mechanism of the solvent-free monoacylaminal formation.
10. (a) An angiogenesis inhibitor.; (b) Hayashi, Y.; Shoji, M.; Yamaguchi, J.; Sato, K.;
Yamaguchi, S.; Mukaiyama, T.; Sakai, K.; Asami, Y.; Kakeya, H.; Osada, H. J. Am.
Chem. Soc. 2002, 124, 12078–12079.
Acknowledgments
This work was supported by the National Science Foundation
under CHE-051830 and also a MRI grant under CHE-0722385.
11. (a) Cichewicz, R. H.; Valeriote, F. A.; Crews, P. Org. Lett. 2004, 6, 1951–1954; (b)
Pettit, G. R.; Xu, J.-P.; Chapuis, J.-C.; Pettit, R. K.; Tackett, L. P.; Doubek, D. L.;
Hooper, J. N. A.; Schmidt, J. M. J. Med. Chem. 2004, 47, 1149–1152.
12. (a) Unpublished work. (b) The reactions producing the carbinolamides were
performed at room temperature with the monoacylaminals being hydrolyzed
in a weakly acidic solution (pH maintained between 4 and 5 using 0.1 M HCl).
Reaction progress was followed by monitoring the pH of the solution with the
solvolysis being deemed complete when no further changes in pH occurred.
The product precipitated during formation but the reaction solution was
cooled, in an ice bath, prior to collection of the product by vacuum filtration.
13. Kiren, S.; Shangguan, N.; Williams, L. J. Tetrahedron Lett. 2007, 48, 7456–7459.
14. Lokensgard, J. P.; Fischer, J. W.; Bartz, W. J. J. Org. Chem. 1985, 50, 5609–5611.
15. Katritzky, A. R.; Fan, W.-Q.; Black, M.; Pernak, J. J. Org. Chem. 1992, 57, 547–549.
16. (a) Sakai, H.; Sekiya, M. Chem. Pharm. Bull. 1969, 17, 32–35; (b) Sekiya, M.; Ito,
K. Chem. Pharm. Bull. 1963, 11, 888.
Supplementary data
Supplementary data (synthetic methods and characterization of
all monoacylaminals) associated with this article can be found, in
References and notes
1. Zaugg, H. E.; Martin, W. B.. Org. React. 1965, 14, 52–269.
17. (a) All reactions were performed in a fume hood due to the evaporation of
morpholine from the reaction mixture during the course of the procedure. (See
Scheme 4 and discussion of the proposed mechanism.) (b) All flames were
extinguished prior to the addition of ether to the Erlenmeyer flask.
18. (a) Although limited, available data suggests that benzamide derivatives will
have pKa’s greater than 19 and as low as 16 for 4-nitrobenzamide (see Refs. 18b
and 18c). Amines are expect to have a much higher pKa and are therefore
excellent organic bases (see Ref. 17d).; (b) Hine, J.; Hine, M. J. Am. Chem. Soc.
1952, 74, 5266–5271; (c) Homer, R. B.; Johnson, C. D. The Chemistry of Amides;
Interscience Publishers: New York, 1970; (d) Fraser, R. R.; Mansour, T. S. J. Org.
Chem. 1984, 49, 3442–3443.
2. (a) Bundgaard, H. In Design of Prodrugs; Bundgaard, H., Ed.; Elsevier:
Amsterdam, 1985; pp 1–92; (b) Bundgaard, H.; Buur, A. Int. J. Pharm. 1987,
37, 185–194; (c) Bundgaard, H.; Johansen, M. Int. J. Pharm. 1980, 5, 67–77; (d)
Bundgaard, H.; Johansen, M. Int. J. Pharm. 1984, 22, 45–56; (e) Johansen, M.;
Bundgaard, H. Arch. Pharm. Chem. Sci. Ed. 1979, 7, 175–192.
3. (a) Tenn, W. J.; French, N. L.; Nagorski, R. W. Org. Lett. 2001, 3, 75–78; (b)
Mennenga, A. G.; Johnson, A. L.; Nagorski, R. W. Tetrahedron Lett. 2005, 46,
3079–3083; (c) Tenn, W. J.; Murphy, J. L.; Bim-Merle, J. K.; Brown, J. A.; Junia, A.
J.; Price, M. A.; Nagorski, R. W. J. Org. Chem. 2007, 72, 6075–6083; (d) Ankem, R.
V.; Murphy, J. L.; Nagorski, R. W. Tetrahedron Lett. 2008, 49, 6547–6549; (e)
Murphy, J. L.; Tenn, W. J., III; Labuda, J. J.; Nagorski, R. W. Tetrahedron Lett. 2009,
50, 7358–7361.