Journal of Medicinal Chemistry
Article
G. D.; Shepherd, P. R.; Daniele, N.; Kulkarni, S.; Abbott, B.; Saylik, D.;
Jones, C.; Lu, L.; Giuliano, S.; Hughan, S. C.; Angus, J. A.; Robertson,
A. D.; Salem, H. H. PI 3-Kinase p110β: A New Target for
Antithrombotic Therapy. Nat. Med. 2005, 11, 507−514.
(3) For a report of PI3Kβ/PI3Kδ dual inhibitors see the following:
Kinght, Z. A.; Chiang, G. G.; Alaimo, P. J.; Kenski, D. M.; Ho, C. B.;
Coan, K.; Abraham, R. T.; Shokat, K. M. Isoform-Specific
Phosphoinositide 3-Kinase Inhibitors from an Arylmorpholine
Scaffold. Bioorg. Med. Chem. 2004, 12, 4749−4759.
(7) (a) Hayakawa, M.; Kaizawa, H.; Kawaguchi, K.; Ishikawa, N.;
Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.;
Tsukamoto, S.; Raynaud, F. I.; Waterfield, M. D.; Parker, P.;
Workman, P. Synthesis and Biological Evaluation of Imidazo[1,2-
a]pyridine Derivatives as Novel PI3 Kinase p110α Inhibitors. Bioorg.
Med. Chem. 2007, 15, 403−412. (b) Pereira, A. R.; Strangman, W. K.;
Marion, F.; Feldberg, L.; Roll, D.; Mallon, R.; Hollander, I.; Andersen,
R. Synthesis of Phosphatidylinositol 3-Kinase (PI3K) Inhibitory
Analogues of the Sponge Meroterpenoid Liphagal. J. Med. Chem.
2010, 53, 8523−8533. (c) Gilbert, A. M.; Nowak, P.; Brooijmans, N.;
Bursavich, M. G.; Dehnhardt, C.; Delos Santos, E.; Feldberg, L. R.;
Hollander, I.; Kim, S.; Lombardi, S.; Park, K.; Venkatesan, A. M.;
Mallon, R. Novel Purine and Pyrazolo[3,4-d]pyrimidine Inhibitors of
PI3 Kinase-α: Hit to Lead Studies. Bioorg. Med. Chem. Lett. 2010, 20,
636−639. (d) Kendall, J. D.; Rewcastle, G. W.; Frederick, R.; Mawson,
C.; Denny, W. A.; Marshall, E. S.; Baguley, B. C.; Chaussade, C.;
Jackson, S. P.; Shepherd, P. R. Synthesis, Biological Evaluation and
Molecular Modeling of Sulfonohydrazides as Selective PI3K p110α
Inhibitors. Biol. Org. Med. Chem. 2007, 15, 7677−7687. (e) Jamieson,
S.; Flanagan, J. U.; Kolekar, S.; Buchanan, S.; Kendall, J. D.; Lee, W.-J.;
Rewcastle, G. W.; Denny, W. A.; Singh, R.; Dickson, J.; Baguley, B. C.;
Shepherd, P. R. A Drug Targeting Only p110α Can Block
Phosphoinositide 3-Kinase Signaling and Tumour Growth in Certain
Cell Types. Biochem. J. 2011, 438, 53−62. (f) Knight, Z. A.; Gonzalez,
B.; Feldman, M. E.; Zunder, E. R.; Goldenberg, D. D.; Williams, O.;
Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; Balla, T.; Weiss, W. A.;
Williams, R. L.; Shokat, K. M. A Pharmacological Map of the PI3-K
Family Defines a Role for p110α in Insulin Signaling. Cell 2006, 125,
733−747.
(8) (a) Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S.
J.; Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S. A.;
Friedman, L. S.; Hayes, A.; Hancox, T. C.; Kugendradas, A.; Lensun,
L.; Moore, P.; Olivero, A. G.; Pang, J.; Patel, S.; Pergl-Wilson, G. H.;
Raynaud, F. I.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch,
M. H.; Valenti, M.; Wallweber, H. J. A.; Wan, N. C.; Wiesmann, C.;
Workman, P.; Zhyvoloup, P.; Zvelebil, M. J.; Shuttleworth, S. J. The
Identification of 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-
1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941)
as a Potent, Selective, Orally Bioavailable Inhibitor of Class I PI3
Kinase for the Treatment of Cancer. J. Med. Chem. 2008, 51, 5522−
5532. (b) Sutherlin, D. P.; Sampath, D.; Berry, M.; Castanedo, G.;
Chang, Z.; Chuckowree, I.; Dotson, J.; Folkes, A.; Friedman, L.;
Goldsmith, R.; Heffron, T.; Lee, L.; Lesnick, J.; Lewis, C.; Mathieu, S.;
Nonomiya, J.; Olivero, A.; Pang, J.; Prior, W. W.; Salphati, L.; Sideris,
S.; Tian, Q.; Tsui, V.; Wan, N. C.; Wang, S.; Wiesmann, C.; Wong, S.;
Zhu, B.-Y. Discovery of (Thienopyrimidin-2-yl)aminopyrimidines as
Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-
PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer. J. Med.
Chem. 2010, 53, 1086−1097. (c) Heffron, T. P.; Berry, M.; Castanedo,
G.; Chang, C.; Chuckowree, I.; Dotson, J.; Folkes, A.; Gunzner, J.;
Lesnick, J. D.; Lewis, C.; Mathieu, S.; Nonomiya, J.; Olivero, A.; Pang,
J.; Peterson, D.; Salphati, L.; Sampath, D.; Sideris, S.; Sutherlin, D. P.;
Tsui, V.; Wan, N. C.; Wang, S.; Wong, S.; Zhu, B. Y. Identification of
GNE-477, a Potent and Efficacious Dual PI3K/mTOR Inhibitor.
Bioorg. Med. Chem. Lett. 2010, 20, 2408−2411. (d) Staben, S. T.;
Heffron, T. P.; Sutherlin, D. P.; Bhat, S. R.; Castanedo, G. M.;
Chuckowree, I.; Dotson, J.; Folkes, A.; Friedman, L.; Lee, L.; Lesnick,
J.; Lewis, C.; Nonomiya, J.; Olivero, A.; Plise, E.; Pang, J.; Prior, W.
W.; Salphati, L.; Rouge, L.; Sampath, D.; Tsui, V.; Wan, N. C.; Wang,
S.; Weismann, C.; Wu, P.; Zhu, B. Z. Structure-Based Optimization of
Pyrazolo−Pyrimidine and −Pyridine Inhibitors of PI3 Kinase. Bioorg.
Med. Chem. Lett. 2010, 20, 6048−6051. (e) Staben, S. T.; Siu, M.;
Goldsmith, R.; Olivero, A. G.; Do, S.; Burdick, D.; Heffron, T. P.;
Sutherlin, D. P.; Zhu, B.-Y.; Tsui, V.; Le, H.; Lee, L.; Lesnick, J.; Lewis,
C.; Murray, J. M.; Nonomiya, J.; Pang, J.; Prior, W. W.; Salphati, L.;
Rouge, L.; Sampath, D.; Wiesmann, C.; Wu, P. Structure-Based Design
of Thienobenzoxepin Inhibitors of PI3-Kinase. Bioorg. Med. Chem. Lett.
2011, 21, 4054−4058.
(4) (a) Sadhu, C.; Dick, K.; Tino, W. T.; Staunton, D. E. Selective
Role of PI3Kδ in Neutrophil Inflammatory Responses. Biochem.
Biophys. Res. Commun. 2003, 308, 764−769. (b) Fruman, D. A.
Phosphoinositide 3-Kinase and Its Targets in B-Cell and T-Cell
Signaling. Curr. Opin. Immunol. 2004, 16, 314−320. (c) Okkenhaug,
K.; Vanhaesbroeck, B. PI3K in Lymphocyte Development, Differ-
entiation, and Activation. Nat. Rev. Immunol. 2003, 3, 317−330.
(d) Rommel, C.; Camps, M.; Ji, H. PI3Kδ and PI3Kγ: Partners in
Crime in Inflammation in Rheumatoid Arthritis and Beyond? Nat. Rev.
Immunol. 2007, 7, 191−201. (e) Ruckle, T.; Schwarz, M. K.; Rommel,
C. PI3Kγ Inhibition: Towards an Aspirin for the 21st Century? Nat.
Rev. Drug Discovery 2006, 5, 903−918. (f) Barbier, D. F; Barolome, A.;
Hernandez, C.; Flores, J. M.; Redondo, C.; Fernandez-Arias, C.;
Camps, M.; Ruckle, T.; Schwarz, M. K.; Rodriguez, S.; Martinez, C.;
Balomenos, D.; Rommel, C.; Carrera, A. C. PI3Kγ Inhibition Blocks
Glomerulonephritis and Extends Lifespan in a Mouse Model of
Systemic Lupus. Nat. Med. 2005, 11, 933−935. (g) Wymann, M. P.;
Bjorklof, K.; Calvez, R.; Finan, P.; Thomas, M.; Trifilieff, A.; Barbier,
M.; Altruda, F.; Hirsch, E.; Laffargue, M. Phosphoinositide 3-Kinase γ:
A Key Modulator in Inflammation and Allergy. Biochem. Soc. Trans.
2003, 31, 275−280. (h) Hirsch, E.; Katanaev, V. L.; Garlanda, C.;
Azzolino, O.; Pirola, L.; Silengo, L.; Sozzani, S.; Mantovani, A.;
Altruda, F.; Wymann, M. P. Central Role for G Protein-Coupled
Phosphoinositide 3-Kinase γ in Inflammation. Science 2000, 287,
1049−1053. (i) Camps, M.; Ruckle, T.; Ji, H.; Ardissone, V.; Rintelen,
̈
F.; Shaw, J.; Ferrandi, C.; Chabert, C.; Gillieron, C.; Francon, B.;
Martin, T.; Gretener, D.; Perrin, D.; Leroy, D.; Vitte, P.-A.; Hirsch, E.;
Wymann, M. P.; Cirillo, R.; Schwarz, M. K.; Rommel, C. Blockade of
PI3Kγ Suppresses Joint Inflammation and Damage in Mouse Models
of Rheumatoid Arthritis. Nat. Med. 2005, 11, 936−943.
(5) (a) Ameriks, M. K.; Venable, J. D. Small Molecule Inhibitors of
Phosphoinositide 3-Kinase (PI3K) δ and γ. Curr. Top. Med. Chem.
2009, 9, 738−753. (b) Sadhu, C.; Masinovsky, B.; Dick, K.; Sowell, C.
G.; Staunton, D. E. Essential Role of Phosphoinositide 3-Kinase δ in
Neutrophil Directional Movement. J. Immunol. 2003, 170, 2647−2654.
(c) Pomel, V.; Klicic, J.; Covini, D.; Church, D. D.; Shaw, J. P.; Roulin,
K.; Burgat-Charvillon, F.; Valognes, D.; Camps, M.; Chabert, C.;
Gillieron, C.; Francon, B.; Perrin, D.; Leroy, D.; Gretener, D.; Nichols,
A.; Vitte, P. A.; Carboni, S.; Rommel, C.; Schwarz, M. K.; Ruckle, T.
̈
Furan-2-ylmethylene Thiazolidinediones as Novel, Potent, and
Selective Inhibitors of Phosphoinositide 3-Kinase γ. J. Med. Chem.
2006, 49, 3857−3871. (d) Pereira, A. R.; Strangman, W. K.; Marion,
F.; Feldberg, L.; Roll, D.; Mallon, R.; Hollander, I.; Andersen, R. J.
Synthesis of Phosphatidylinositol 3-Kinase (PI3K) Inhibitory Ana-
logues of the Sponge Meroterpenoid Liphagal. J. Med. Chem. 2010, 53,
8523−8533.
(6) (a) Vivanco, I.; Sawyers, C. L. The Phosphatidylinositol 3-
Kinase-AKT Pathway in Human Cancer. Nat. Rev. Cancer 2002, 2,
489−501. (b) Cantley, L. C. The Phosphoinositide 3-Kinase Pathway.
Science 2002, 296, 1655−1657. (c) Guertin, D. A.; Sabatini, D. M.
Defining the Role of mTOR in Cancer. Cancer Cell 2007, 12, 9−22.
(d) Fasolo, A.; Sessa, C. mTOR Inhibitors in the Treatment of Cancer.
Expert Opin. Invest. Drugs 2008, 17, 1717−1734. (e) Bellacosa, A;
Kumar, C. C.; Di Cristofano, A.; Testa, J. R. Activation of AKT
Kinases in Cancer: Implications for Therapeutic Targeting. Adv.
Cancer Res. 2005, 94, 29−86. (f) Ihle, N. T.; Powis, G. Take Your PIK:
Phosphatidylinositol 3-Kinase Inhibitors Race through the Clinic
toward Cancer Therapy. Mol. Cancer. Ther. 2009, 8, 1−9. (g) Liu, P.;
Cheng, H.; Roberts, T. M.; Zhou, J. J. Targeting the Phosphoinositide
3-Kinase Pathway in Cancer. Nat. Rev. Drug Discovery 2009, 8, 627.
7832
dx.doi.org/10.1021/jm2007084|J. Med. Chem. 2011, 54, 7815−7833