Synthesis of C8-Ar-G-Modified Oligonucleotides
A R T I C L E S
ent excited-state intramolecular proton transfer (ESIPT) process
that may be used to sense the local solvent environment within
duplex DNA.18 (Pyren-1-yl)-8-dG (Py-8-dG) has been touted
as a duplex-sensitive optical probe and as a fluorescent donor
for the investigation of charge transfer processes between DNA
and peptides.19 The C8-dimethylanilide-G adduct p-NMe2Ph-
8-G has been used for the study of electron transfer in a donor-
bridge-acceptor (DBA) ensemble.20
While C8-Ar-purine adducts are of wide interest in the current
literature, their incorporation into oligonucleotides has been
problematic. Some studies have reported solid-phase DNA syn-
thesis of oligonucleotides bearing C8-Ar-purine adducts,19,21-23
while others have pointed out the limitations of this strategy.24
One of the problems may stem from their sensitivity to acid.
Our studies show that C8-Ar-dG adducts can have k1 values for
acid-catalyzed deglycosylation that are 200-fold larger than k1
for dG.25 Such adducts are also more prone than dG to
oxidation,26 suggesting that chemical incompatibility with syn-
thesis conditions may present a problem for certain C8-Ar-dG
adducts.
Modified nucleic acids can also be prepared enzymatically
by polymerase incorporations of functionalized nucleoside
triphosphates (dNTPs).27 This approach has been used for
incorporation of 8-NH2-dGTP28 and the bulkier 8-[(2-imidazol-
4-ylethyl)amino]-dGTP29 for construction of novel DNAzymes.
However, recent efforts from the Hocek laboratory30 show that
8-substituted purine derivatives bearing groups larger than
amino, bromo, or methyl are generally poor substrates for DNA
polymerases and that 8-Ph-dATP is too bulky for the polymerase
to accept as a substrate.30b,c
Figure 1. Structures of C8-Ar-dG adducts derived from chemical carcino-
gens and structural analogues used for fluorescence sensing, G-quadruplex
formation, and the study of electron transfer processes.
dG) are formed from reactions of DNA with mutagenic
diazoquinones.10 Carcinogenic arylhydrazines that produce aryl
radical intermediates generate Ph-8-dG and other C8-Ar-purine
adducts bearing various para-substituents.11 The polycyclic
aromatic hydrocarbons (PAHs) benzo[a]pyrene (BP)12 and
3-nitrobenzanthrone (NBA)13 generate 6-BP-8-dG and N-Ac-
ABA-8-dG, respectively. Collectively, these adducts may play
a role in the biological activity of these toxins.
Some C8-Ar-purine adducts also have desirable properties.
Attachment of (m-acetylphenyl) to yield m-APh-8-dG expands
the Hoogsteen edge of dG and stabilizes G-quadruplex formation
that may have biomedical applications.14 In contrast, the Sessler
laboratory demonstrated that the pyrrole-8-G analogue forms a
three-point Hoogsteen-type interaction with G that can disrupt
G-quadruplex formation.15 C8-Ar-purines also act as fluoro-
phores,16 and phenolic adducts structurally related to C-(p-
OHPh)-8-dG act as pH-sensing fluorescent probes,17 while the
isomeric C-(o-OHPh)-8-dG adduct undergoes a solvent-depend-
(18) (a) McLaughlin, C. K.; Lantero, D. R.; Manderville, R. A. J. Phys.
Chem. A 2006, 110, 6224–6230. (b) Millen, A. L.; McLaughlin, C. K.;
Sun, K. M.; Manderville, R. A.; Wetmore, S. D. J. Phys. Chem. A
2008, 112, 3742–3753. (c) Millen, A. L.; Manderville, R. A.; Wetmore,
S. D. J. Phys. Chem. B 2010, 114, 4373–4382. (d) Millen, A. L.;
Churchill, C. D. M.; Manderville, R. A.; Wetmore, S. D. J. Phys.
Chem. B 2010, 114, 12995–13004.
(19) (a) Valis, L.; Mayer-Enthart, E.; Wagenknecht, H.-A. Bioorg. Med.
Chem. Lett. 2006, 16, 3184–3187. (b) Wanninger-Weiss, C.; Valis,
L.; Wagenknecht, H.-A. Bioorg. Med. Chem. 2008, 16, 100–106.
(20) Lin, Z.; Lawrence, C. M.; Xiao, D.; Kireev, V. V.; Skourtis, S. S.;
Sessler, J. L.; Beratan, D. N.; Rubtsov, I. V. J. Am. Chem. Soc. 2009,
131, 18060–18062.
(21) Kohda, K.; Tsunomoto, H.; Kasamatsu, T.; Sawamura, F.; Terashima,
I.; Shibutani, S. Chem. Res. Toxicol. 1997, 10, 1351–1358.
(22) Gannett, P. M.; Heavner, S.; Daft, J. R.; Shaughnessy, K. H.; Epperson,
J. D.; Greenbaum, N. L. Chem. Res. Toxicol. 2003, 16, 1385–1394.
(23) Vongsutilers, V.; Daft, J. R.; Shaughnessy, K. H.; Gannett, P. M.
Molecules 2009, 14, 3339–3352.
(10) Kikugawa, K.; Kato, T.; Kojima, K. Mutat. Res. 1992, 268, 65–75.
(11) (a) Lawson, T.; Gannett, P. M.; Yau, W.-M.; Dalal, N. S.; Toth, B. J.
Agric. Food Chem. 1995, 43, 2627–2635. (b) Hiramoto, K.; Kaku,
M.; Sueyoshi, A.; Fujise, M.; Kikugawa, K. Chem. Res. Toxicol. 1995,
8, 356–362. (c) Gannett, P. M.; Lawson, T.; Miller, M.; Thakkar, D. D.;
Lord, J. W.; Yau, W.-M.; Toth, B. Chem.-Biol. Interact. 1996, 101,
1–25. (d) Gannett, P. M.; Powell, J. H.; Rao, R.; Shi, X.; Lawson, T.;
Kolar, C.; Toth, B. Chem. Res. Toxicol. 1999, 12, 297–304.
(12) (a) Rogan, E. G.; Cavalieri, E. L.; Tibbels, S. R.; Cremonesi, P.;
Warner, C. D.; Nagel, D. L.; Tomer, K. B.; Cerny, R. L.; Gross, M. L.
J. Am. Chem. Soc. 1988, 110, 4023–4029. (b) Cavalieri, E. L.; Rogan,
E. G.; Li, K.-M.; Todorovic, R.; Ariese, F.; Jankowiak, R.; Grubor,
N.; Small, G. J. Chem. Res. Toxicol. 2005, 18, 976–983.
`
(24) Vra´bel, M.; Hora´kova´, P.; Pivonˇkova´, H.; Kalachova, L.; Cernocka´,
ˇ
H.; Cahova´, H.; Pohl, R.; Sebest, P.; Havran, L.; Hocek, M.; Fojta,
M. Chem.sEur. J. 2009, 15, 1144–1154.
(25) Schlitt, K. M.; Sun, K. M.; Paugh, R. J.; Millen, A. L.; Navarro-
Whyte, L.; Wetmore, S. D.; Manderville, R. A. J. Org. Chem. 2009,
74, 5793–5802.
(26) Weishar, J. L.; McLaughlin, C. K.; Baker, M.; Gabryelski, W.;
Manderville, R. A. Org. Lett. 2008, 10, 1839–1842.
(27) (a) Ja¨ger, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.; Thum,
O.; Famulok, M. J. Am. Chem. Soc. 2005, 127, 15071–15082. (b)
Hocek, M.; Fojta, M. Org. Biomol. Chem. 2008, 6, 2233–2241. (c)
ˇ
(13) Enya, T.; Kawanishi, M.; Suzuki, H.; Matsui, S.; Hisamatsu, Y. Chem.
Res. Toxicol. 1998, 11, 1460–1467.
Raindlova´, V.; Pohl, R.; Sanda, M.; Hocek, M. Angew. Chem., Int.
Ed. 2010, 49, 1064–1066.
(14) (a) Gubala, V.; Betancourt, J. E.; Rivera, J. M. Org. Lett. 2004, 6,
4735–4738. (b) Garc´ıa-Arriaga, M.; Hobley, G.; Rivera, J. M. J. Am.
Chem. Soc. 2008, 130, 10492–10493.
(28) Kamath-Loeb, A. S.; Hizi, A.; Kasai, H.; Loeb, L. A. J. Biol. Chem.
1997, 272, 5892–5898.
(29) (a) Perrin, D. M.; Garestier, T.; Helene, C. J. Am. Chem. Soc. 2001,
123, 1556–1563. (b) Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich,
D.; Perrin, D. M. Angew. Chem., Int. Ed. 2008, 47, 4346–4350.
(15) Sessler, J. L.; Jayawickramarajah, J.; Sherman, C. L.; Brodbelt, J. S.
J. Am. Chem. Soc. 2004, 126, 11460–11461.
ˇ
(16) (a) Greco, N. J.; Tor, Y. Tetrahedron 2007, 63, 3515–3527. (b) Collier,
A.; Wagner, G. K. Chem. Commun. 2008, 178, 180.
(30) (a) Capek, P.; Pohl, R.; Hocek, M. Org. Biomol. Chem 2006, 4, 2278–
2284. (b) Cahova´, H.; Pohl, R.; Bedna´rova´, L.; Nova´kova´, K.; Cvacˇka,
J.; Hocek, M. Org. Biomol. Chem 2008, 6, 3657–3660. (c) Mac´ıcˇkova´-
Cahova´, H.; Hocek, M. Nucleic Acids Res. 2009, 37, 7612–7622.
(17) Sun, K. M.; McLaughlin, C. K.; Lantero, D. R.; Manderville, R. A.
J. Am. Chem. Soc. 2007, 129, 1894–1895.
9
J. AM. CHEM. SOC. VOL. 133, NO. 1, 2011 43