L. Tong et al. / Bioorg. Med. Chem. Lett. 20 (2010) 6785–6789
6789
Table 1 (continued)
Compound
Synthesis scheme
4
B ring
C ring
A ring
Kia,15 CB2 (nM)
Selectivity KiCB1/KiCB2
4112
0.4
2797
26,378
3199
4213
4
4
1.6
2.5
4314
a
Individual data points for determinations of Ki for CB1 and CB2 were carried out in triplicate, in two separate assays.
6. (a) Lavey, B. J.; Kozlowski, J.; Hipkin, R. W.; Gonsiorek, W.; Lundell, D. J.;
Piwinski, J.; Narula, S.; Lunn, C. A. Bioorg. Med. Chem. Lett. 2005, 15, 783; (b)
Shankar, B. B.; Lavey, B. J.; Zhou, G.; Spitler, J. A.; Tong, L.; Rizvi, R.; Yang, D.-Y.;
Wolin, R.; Kozlowski, J. A.; Shih, N.-Y.; Wu, J.; Hipkin, R. W.; Gonsiorek, W.;
Lunn, C. A. Bioorg. Med. Chem. Lett. 2005, 15, 4417; (c) Lavey, B. J.; Kozlowski, J.
A.; Shankar, B. B.; Spitler, J. M.; Zhou, G.; Yang, D.-Y.; Shu, Y.; Wong, M. K.;
Wong, S. C.; Shih, N. Y.; Wu, J.; McCombie, S. W.; Rizvi, R.; Wolin, R. L.; Lunn, C.
A. Bioorg. Med. Chem. Lett. 2007, 17, 3760.
7. Lunn, C. A.; Fine, J. S.; Rojas-Triana, A.; Jackson, J. V.; Fan, X.; Kung, T. T.;
Gonsiorek, W.; Schwarz, M. A.; Lavey, B. J.; Kozlowski, J. A.; Narula, S. K.;
Lundell, D. J.; Hipkin, R. W.; Bober, L. A. J. Pharmacol. Exp. Ther. 2006, 316, 780.
8. Lunn, C. A.; Reich, E. P.; Fine, J. S.; Lavey, B.; Kozlowski, J. A.; Hipkin, R. W.;
Lundell, D. J.; Bober, L. Br. J. Pharmacol. 2008, 153, 226.
Table 2
Compound
Rat AUC nM h (10 mpk)
12
40
41
42
43
3900
4559
3767
17,555
3191
9. Gilbert, E. J.; Zhou, G.; Wong, M. K. C.; Tong, L.; Shankar, B. B.; Huang, C.; Kelly,
J.; Lavey, B. J.; McCombie, S. W.; Chen, L.; Rizvi, R.; Dong, Y.; Shu, Y.; Kozlowski,
J. A.; Shih, N.-Y.; Hipkin, W.; Gonsiorek, W.; Lunn, C. A.; Lundell, D. J. Bioorg.
Med. Chem. Lett. 2010, 20, 608.
Selected compounds were dosed in rats for pharmacokinetic
evaluations.16 The exposure levels attained for compounds 12,
40–43 at 10 mg/kg dose in 20% (w/v) hydroxypropyl b cyclodex-
trin, are shown in Table 2.
In conclusion, we expanded the SAR of compound 1 by selecting
the indole ring as a B-ring surrogate, and second by optimizing the
SAR in an iterative fashion through A- and C-ring changes. These
efforts culminated in identification of compounds (Table 2) which
are structurally very different than 1, which have comparable po-
tency and selectivity for CB2, and are currently under going further
evaluation.
10. McGuinness, D.; Malikzay, A.; Visconti, R.; Lin, K.; Bayne, M.; Monsma, F.; Lunn,
C. A. J. Biomol. Screening 2009, 14, 49.
11. Compound 12: 1H NMR (CDCl3) d 8.25 (d, J = 9.3 Hz, 1H), 8.03 (dt, J = 1.6 Hz,
7.0 Hz, 1H), 7.64 (d, J = 8 Hz, 1H), 7.51–7.60 (m, 2H), 7.47 (b, 1H), 7.37 (t,
J = 7.7 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.05 (t, J = 9.6 Hz, 1H), 5.6 (b, 1H), 3.95 (d,
J = 13 Hz, 2H), 3.19 (d, J = 6.6 Hz, 2H), 2.84 (t, J = 11.5 Hz, 2H), 1.81 (d,
J = 13.3 Hz, 2H), 1.70 (m, 1H), 1.35 (dt, J = 4.0 Hz, 11.6 Hz, 2H).
12. Compound 41: 1H NMR (CDCl3) d 8.23 (m, 1H), 8.02 (m, 1H), 7.58 (m, 1H), 7.42
(s, 1H), 7.25 (m, 3H), 7.04 (m, 1H), 5.17 (t, J = 6.6 Hz, 1H), 3.42 (m, 2H), 3.33 (m,
2H), 3.19 (d, J = 6.6 Hz, 2H), 1.54 (m, 4H), 1.42 (q, J = 7.0 Hz, 2H), 0.83 (t,
J = 7.0 Hz, 3H).
13. Compound 42: 1H NMR (CDCl3) d 8.5 (d, J = 4 Hz, 1H), 8.4 (d, J = 6 Hz, 1H), 8.2 (d,
J = 6 Hz, 1H), 7.9 (m, 1H), 7.62 (d, 1H), 7.4–7.6 (m, 3H), 7.36 (m, 1H), 3.5 (m,
2H), 3.38 (m, 2H), 3.19 (d, J = 6.6 Hz, 2H), 1.58 (m, 4H), 1.38 (m, 2H), 1.2 (m,
4H).
Acknowledgement
14. Compound 43: 1H NMR (CDCl3) d 8.40 (d, J = 7.0 Hz, 1H), 8.23 (m, 1H), 7.97 (d,
J = 10 Hz, 1H), 7.58 (m, 1H), 7.30 (m, 1H), 7.22 (m, 1H), 7.02 (m, 1H), 5.40 (b,
1H), 3.70 (d, J = 15 Hz, 2H), 3.25 (m, 4H), 3.20 (s, 3H), 1.96 (d, J = 15 Hz, 2H),
1.66 (m, 2H).
We thank Dr. J. Palamanda for pharmacokinetic evaluations.
References and notes
15. Compounds 1, 6, 12 and 42 were tested for the ability to modulate interaction
between a recombinant cannabinoid CB2 receptor and b-arrestin, using the
PathHunter™ protein complementation assay (DiscoveRx Corporation).
Previous studies showed that this system correctly predicts the
1. Dickey, B. F.; Walker, J. K.; Hanania, N. A.; Bond, R. A. Curr. Opin. Pharmacol.
2010, 10, 254.
2. Atack, J. R. Pharmacol. Ther. 2010, 125, 11.
pharmacology of
a number of cannabinoid CB2 agonists and inverse
3. Aloyo, V. J.; Berg, K. A.; Spampinato, U.; Clarke, W. P.; Harvey, J. A. Pharmacol.
Ther. 2009, 121, 160.
4. Bermudez-Silva, F. J.; Viveros, M. P.; McPartland, J. M.; Rodriguez de Fonseca, F.
Pharmacol. Biochem. Behav. 2010, 95, 375.
5. Lange, J. H. M.; van der Neut, M. A. W.; Wals, H. C.; Kuil, G. D.; Borst, A. J. M.;
Mulder, A.; den Hartog, A. P.; Zilaout, H.; Goutier, W.; van Stuivenberg, H. H.;
van Vliet, B. J. Bioorg. Med. Chem. Lett. 2010, 20, 1084. and references cited
therein.
agonists.10 Test compounds behaved as inverse agonists in a manner similar
to compound 1, decreasing the constitutive ability of the cannabinoid CB2
receptor to interact with b-arrestin. As expected, the agonist WIN55212-2
increases this interaction.
16. Korfmacher, W. A.; Cox, K. A.; Ng, K. J.; Veals, J.; Hsieh, Y.; Wainhaus, S.; Broske,
L.; Prelusky, D.; Nomeir, A.; White, R. E. Rapid Commun. Mass Spectrom. 2001,
15, 335.