Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
5
oxidation of intermediate II by the excited state of the
photocatalyst would generate I (see Supporting Information).
Reaction of I and II generates the radical III, hydrogen molecule,
and protonated desired product, which is deprotonated to give
the final product. Protonation of III gives I again.
DOI: 10.1039/D0CC03286G
Catalysis, 2017, 7, 907–911; (c) M.-C. Fu, R. Shang, B. Zhao, B.
Wang, Y. Fu, Science, 2019, 363, 1429–1434.
D. A. Dirocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M.
Tudge, Angew. Chem. Int. Ed., 2014, 53, 4802–4806.
(a) J. Jin, D. W. C. Macmillan, Nature, 2015, 525, 87–90; (b) S.
P. Pitre, M. Muuronen, D. A. Fishman, L. E. Overman, ACS
Catalysis, 2019, 9, 3413–3418.
I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara,
A. L. Sobel, P. S. Baran, J. Am. Chem. Soc., 2010, 132, 13194–
13196.
(a) Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon,
R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins,
Y. Ishihara, P. S. Baran, Nature, 2012, 492, 95–99; (b) F.
O’Hara, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc., 2013,
135, 12122–12134; (c) R. Gianatassio, S. Kawamura, C. L.
Eprile, K. Foo, J. Ge, A. C. Burns, M. R. Collins, P. S. Baran,
Angew. Chem. Int. Ed., 2014, 53, 9851–9855.
6
7
In summary, we developed
a new protocol for the
photocatalytic Minisci-type C–H alkylations of heteroarenes
using alkylsilicates as alkyl radical precursors. This method does
not require any terminal oxidant, which makes it possible to
functionalize various heteroarenes in a mild and clean reaction
system. A variety of primary, secondary, and tertiary alkyl
groups was directly incorporated into various electron-deficient
heteroarenes in an efficient manner. Mechanistic studies
suggest that this terminal-oxidant-free alkylation involves the
photocatalytic formation of the hydrogenated form of the
desired product followed by photocatalytic dehydrogenation.
This study clearly demonstrates that alkylsilicates can be used
in photocatalytic radical chemistry under acidic conditions.
This research was partially supported by a MEXT-supported
program for Strategic Research Foundations at Private
Universities, JSPS KAKENHI Grant Number JP19K15570, the
Tokyo Ohka Foundation for The Promotion of Science and
Technology, Merck & Co., Inc and the Fukuoka Naohiko
Foundation. This research was also supported by crowdfunding
(academist). The authors thank Yumi Hayashi, Subaru Kawasaki,
Yuki Miyabayashi, Kazufumi Nakano, Nobu, Kenta Tanaka,
Yoshiyuki Yagi, and Jun Yamaoka for funding. The authors also
thank Prof. Koichi Iwata and Dr. Akira Takakado for their kind
assistance with the Stern–Volmer quenching experiments. The
authors thank Yu Matsui for her assistance with measuring
melting points and redox property of alkylsilicates. DFT
calculations were performed using Research Center for
Computational Science, Okazaki, Japan.
8
9
10 (a) X. Ma, S. B. Herzon, J. Am. Chem. Soc., 2016, 138, 8718–
8721; (b) J. C. Lo, D. Kim, C.-M. Pan, J. T. Edwards, Y. Yabe, J.
Gui, T. Qin, S. Gutiérrez, J. Giacoboni, M. W. Smith, P. L.
Holland, P. S. Baran, J. Am. Chem. Soc., 2017, 139, 2484–2503.
11 (a) G. A. Molander, V. Colombel, V. A. Braz, Org. Lett., 2011,
13, 1852–1855; (b) J. K. Matsui, G. A. Molander, Org. Lett.,
2017, 19, 950–953; (c) J. K. Matsui, D. N. Primer, G. A.
Molander, Chem. Sci., 2017, 8, 3512–3522; (d) H. Yan, Z.-W.
Hou, H.-C. Xu, Angew. Chem. Int. Ed., 2019, 58, 4592–4595.
12 Á. Gutiérrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander, J.
Am. Chem. Soc., 2017, 139, 12251–12258.
13 J. Dong, X. Wang, Z. Wang, H. Song, Y. Liu, Q. Wang, Org.
Chem. Front., 2019, 6, 2902–2906.
14 (a) J. Yoshida, T. Maekawa, T. Murata, S. Matsunaga, S. Isoe,
J. Am. Chem. Soc., 1990, 112, 1962–1970; (b) J. Biedermann,
H. M. R. Wilkening, F. Uhlig, I. Hanzu, Electrochem. Commun.,
2019, 102, 13–18.
15 (a) V. Corcé, L.-M. Chamoreau, E. Derat, J.-P. Goddard, C.
Ollivier, L. Fensterbank, Angew. Chem. Int. Ed., 2015, 54,
11414–11418; (b) M. Jouffroy, D. N. Primer, G. A. Molander, J.
Am. Chem. Soc., 2016, 138, 475–478; (c) C. Lévêque, L.
Chenneberg, V. Corcé, C. Ollivier, L. Fensterbank, Chem.
Commun., 2016, 52, 9877–9880. (d) Z.-J. Wang, S. Zheng, J. K.
Matsui, Z. Lu, G. A. Molander, Chem. Sci., 2019, 10, 4389–
4393.
Conflicts of interest
There are no conflicts to declare.
16 (a) E. F. Perozzi, J. C. Martin, J. Am. Chem. Soc., 1979, 101,
1591–1593; (b) W. H. Stevenson, S. Wilson, J. C. Martin, W. B.
Farnham, J. Am. Chem. Soc., 1985, 107, 6340–6352 (c) K. C. K.
Swamy, V. Chandrasekhar, J. J. Harland, J. M. Holmes, R. O.
Day, R. R. Holmes, J. Am. Chem. Soc., 1990, 112, 2341–2348.
17 For application of the spirosilane bearing a pair of the C,O-
bidentate ligands [-C6H4-2-C(CF3)2O-]. (a) M. Kira, K. Sato, H.
Sakurai, J. Am. Chem. Soc., 1988, 110, 4599–4602; (b) D. A.
Dixon, W. R. Hertler, D.B. Chase, W. B. Farnham, F. Davidson,
Inorg. Chem., 1988, 27, 4012–4018; (c) S. K. Chopra, J. C.
Martin, J. Am. Chem. Soc., 1990, 112, 5342–5343; (d) H.
Lenormand, J.-P. Goddard, L. Fensterbank, Org. Lett., 2013,
15, 748–751; (e) F. Medici, G. Gontard, E. Derat, G. Lemière,
L. Fensterbank, Organometallics, 2018, 37, 517–520; (f) F.
Medici, J. Maury, G. Lemiere, L. Fensterbank, Chem. Eur. J.
2019, 25, 9438–9442; (g) K. Sakai, K. Oisaki, M. Kanai, Adv.
Synth. Catal., 2020, 362, 337–343.
Notes and references
1
A. F. Pozharskii, A. T. Soldatenkov, A. R. Katritzky, Heterocycles
in Life and Society: An Introduction to Heterocyclic Chemistry,
Biochemistry and Applications, 2nd Ed., Wiley, Hoboken, 2011
(a) F. Minisci, E. Vismara, F. Fontana, Heterocycles, 1989, 28,
489–519; (b) M. A. J. Duncton, Med. Chem. Commun., 2011,
2, 1135–1161; (c) R. S. J. Proctor, R. J. Phipps, Angew. Chem.
Int. Ed., 2019, 58, 13666–13699.
2
3
4
(a) F. Minisci, R. Mondelli, G. P. Gardini, O. Porta, Tetrahedron,
1972, 28, 2403–2413; (b) N. Kaur, X. Lu, M. C. Gershengorn, R.
Jain, J. Med. Chem., 2005, 48, 6162–6165; (c) R. A. Garza-
Sanchez, A. Tlahuext-Aca, G. Tavakoli, F. Glorius, ACS Catal.,
2017, 7, 4057–4061; (d) J. Lin, Z. Li, J. Kan, S. Huang, W. Su, Y.
Li, Nat. Commun., 2017, 8, 14353; (e) W.-F. Tian, C.-H. Hu, K.-
H. He, X.-Y. He, Y. Li, Org. Lett., 2019, 21, 6930–6935; (f) X.-L.
Lai, X.-M. Shu, J. Song, H.-C. Xu, Angew. Chem. Int. Ed., 2020,
doi.org/10.1002/anie.202002900.
(a) F. Minisci, E. Vismara, F. Fontana, J. Org. Chem., 1989, 54,
5224–5227; b) M. A. J. Duncton, M. A. Estiarte, R. J. Johnson,
M. Cox, D. J. R. O’Mahony, W. T. Edwards, M. G. Kelly, J. Org.
Chem., 2009, 74, 6354–6357.
18 K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci.,
2011, 2, 715−722.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins