11486 Inorganic Chemistry, Vol. 49, No. 24, 2010
Mahato et al.
of the reversible recognition of Hg2þ are relatively scarce
compared to those which can detect Hg2þ ions in aqueous
solution by chemodosimetry.8a-e,12 Thus, despite widespread
interest and recent advances, there are only a few examples
of chromogenic probes that bind specifically and reversibly
to Hg2þ in the presence of all other metal ions, like alkali,
alkaline earth, common transition metal (more specifically
metal ions like Pb2þ and Cu2þ), and lanthanide ions, and
are capable of detection of Hg2þ in biological samples.13
Thus, the design and synthesis of such new synthetic mole-
cules remains an outstanding challenge. Recent reports sug-
gest that nitrogen binding sites are a good choice for the selec-
tive recognition of heavy metal ions such as Cd2þ, Pb2þ, and
without sacrificing much of its binding ability to the target
Hg2þ ion. With this aim, we could synthesize a diametrically
disubstituted 1,4,8,11-tetraazacyclotetradecane (cyclam) de-
rivative, functionalized with 4-(4-dimethylamino)phenyl azo-
benzene as the reporter moiety, which has shown remarkable
specificity towards Hg2þ in the presence of a wide range of
interfering metal ions in aqueous solutions (including Cd2þ
,
Pd2þ, Cu2þ, and all lanthanide ions). We are reporting herein
its synthesis, binding studies, and [3]pseudorotaxane forma-
tion in the presence of β-cyclodextrin (β-CD). Further, results
of the experimental studies reveal that [3]pseudorotaxane
formation improves the solubility of the receptor in aqueous
solutions and thereby the colorimetric detection phenomena.
Hg2þ 14
More recently, Ho and his co-workers have shown
.
that 8,80-(1,4,10,13-tetrathia-7,16-diazacyclooctadecane-7,16-
diyl)-bis(methylene)diquinolin-7-ol could be used for the
recognition of Hg(II), present in micromolar concentrations
Experimental Section
1,4,8,11-Tetraazacyclotetradecane, 4-(4-dimethylamino-
phenylazo)-benzenesulphonyl chloride, β-cyclodextrin, Hg-
(ClO4)2, Cu(ClO4)2, Zn(ClO4)2, Ni(ClO4)2, Fe(ClO4)2, Pb-
(ClO4)2, Cd(ClO4)2,Cr(ClO4)3,Ca(ClO4)2, Co(ClO4)2,NaClO4,
in the presence of various cations like Liþ, Naþ, Kþ, Mg2þ
,
Ca2þ, Fe2þ, Cu2þ, Zn2þ, Pb2þ, and Al3þ, while some of the
metal ions are reported to interfere with detection if they are
present in relatively much higher concentrations.14 This
leaves us with the opportunity to design and synthesize a
suitable receptor with a softer base as a coordinating unit,
which may allow us to achieve a better specificity over a wider
range of metal ions including Cd2þ, Cu2þ, and lanthanide ions
KClO4,Mg(ClO4)2, CsClO4, Ba(ClO4)2, Ce(NO3)3 6H2O, Eu-
3
(NO3)3 5H2O,Er(NO3)3 5H2O,Nd(NO3)3 6H2O,Tb(NO3)3
3
3
3
3
5H2O, Yb(NO3)3 5H2O, Pr(NO3)3 6H2O, Ho(NO3)3 6H2O,
3
3
3
Lu(NO3)3 xH2O, Dy(NO3)3 xH2O, Gd(NO3)3 6H2O, Sm-
3
3
3
3
(NO3)3 6H2O, La(NO3)3 6H2O, andTm(NO3)3 5H2O were
3
3
obtained from Sigma-Aldrich and were used as received. All
of the other reagents used were procured from S. D. Fine
Chemicals, India. Acetonitrile, chloroform, methanol (AR;
Merck, India), and ethanol (Spectrosol; Spectrochem, India)
were used as solvents. HPLC-grade water (Merck, India) was
used for experiments and spectral studies. ESI-MS measure-
ments were carried out on Waters QTof-Micro instrument.
Microanalysis (C, H, N) was performedusing a Perkin-Elmer
4100 elemental analyzer. FTIR spectra were recorded as KBr
pellets using a Perkin-Elmer Spectra GX 2000 spectrometer.
1H and31PNMRspectrawererecordedon a Bruker500 MHz
FT NMR machine (model: Avance-DPX 500). Electronic
spectra were recorded with a Shimadzu UV-3101 PC/Varian
Cary 500 Scan UV-vis-NIR Spectrophotometer. The images
of the Pseudomonas putida cells were viewed under a normal
light microscope (AXIO IMAGER-Carl Zeiss).
(10) (a) Li, T.; Li, B.; Wang, E.; Dong, S. Chem. Commun. 2009, 3551.
(b) Sancenon, F.; Martinez-Manez, R.; Soto, J. Tetrahedron Lett. 2001, 42, 4321.
(c) Choi, M. J.; Kim, M. Y.; Chang, S.-K. Chem. Commun. 2001, 1664.
(d) Sancenon, F.; Martinez-Manez, R.; Soto, J. Chem. Commun. 2001, 2262.
(e) Brummer, O.; La Clair, J. J.; Janda, K. D. Org. Lett. 1999, 1, 415. (f) Coronado,
ꢀ
ꢀ
E.; Galan-Mascaros, J. R.; Martí-Gastaldo, C.; Palomares, E.; Durrant, J. R.; Vilar,
R.; Gratzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2005, 127, 12351. (g) Lee,
S.-H.; Kumar, J.; Tripathy, S. K. Langmuir 2000, 16, 10482. (h) Ren, X.; Xu, Q.-H.
Langmuir 2009, 25, 29. (i) Hirayama, T.; Taki, M.; Kashiwagi, Y.; Nakamoto, M.;
Kunishita, A.; Itoh, S.; Yamamoto, Y. Dalton Trans. 2008, 4705. (j) Zhang, D.;
Deng, M.; Xu, L.; Zhou, Y.; Yuwen, J.; Zhou, X. Chem.;Eur. J. 2009, 15, 8117.
(k) Liu, X.; Tang, Y.; Wang, L.; Zhang, J.; Song, S.; Fan, C.; Wang, S. Adv. Mater.
2007, 19, 1471. (l) Lee, H.; Lee, S. S. Org. Lett. 2009, 11, 1393. (m) Zhou, Y.;
Zhu, C.-Y.; Gao, X.-S.; You, X.-Y.; Yao, C. Org. Lett. 2010, 12, 2566.
(11) (a) Huang, J.; Xu, Y.; Qian, X. J. Org. Chem. 2009, 74, 2167. (b) Chan,
D. S.-H.; Lee, H.-M.; Che, C.-M.; Leung, C.-H.; Ma, D.-L. Chem. Commun.
2009, 7479. (c) Rurack, K.; Resch-Genger, U.; Bricks, J. L.; Spieles, M. Chem.
Commun. 2000, 2103. (d) Chae, M.-Y.; Czarnik, A. W. J. Am. Chem. Soc. 1992,
114, 9704. (e) Dave, N.; Chan, M. Y.; Huang, P.-J. J.; Smith, B. D.; Liu., J. J. Am.
Chem. Soc. 2010, 132, 2668. (f) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem.,
Int. Ed. 2008, 47, 8025. (g) Joshi, B. P.; Lohani, C. R.; Lee, K.-H. Org. Biomol.
Chem. 2010, 3220. (h) Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J.
Angew. Chem., Int. Ed. 2007, 46, 6658. (i) Ho, M.-L.; Chen, K.-Y.; Wu, L.-C.;
Shen, J.-Y.; Lee, G.-H.; Ko, M.-J.; Wang, C.-C.; Lee, J.-F.; Chou, P.-T. Chem.
Commun. 2008, 2438. (j) Che, Y.; Yang, X.; Zang, L. Chem. Commun. 2008,
1413. (k) Wang, Z.; Lee, J. H.; Lu, Y. Chem. Commun. 2008, 6005. (l) Lee, M. H.;
Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett. 2009, 11, 2101. (m) Jiang,
W.; Wang, W. Chem. Commun. 2009, 3913. (n) Guo, X.; Qian, X.; Jia, L. J. Am.
Chem. Soc. 2004, 126, 2272. (o) Ma, L.-J.; Li, L.; Sun, J.; Tian, C.; Wu, Y. Chem.
Commun. 2008, 6345. (p) Song, K. C.; Kim, J. S.; Park, S. M.; Chung, K.-C.;
Ahn, S.; Chang, S.-K. Org. Lett. 2006, 8, 3413. (q) Rurack, K.; Kollmannsberger,
M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968. (r) Vaswani,
K. G.; Keranen, M. D. Inorg. Chem. 2009, 48, 5797. (s) Suresh, M.; Mandal,
A. K.; Saha, S.; Suresh, E.; Mandoli, A.; Liddo, R. D.; Parnigotto, P. P.; Das, A.
Org. Letts. 2010, DIO: 10.1021/ol102204r.
Synthesis of L. 1,4,8,11-Tetraazacyclotetradecane (cyclam;
247 mg, 1.23 mM) was dissolved in dry chloroform (40 mL) in a
250 mL round-bottomed flask. A solution of 4-(4-dimethylamino-
phenylazo)-benzenesulphonyl chloride (800 mg, 2.46 mM) and
triethyl amine (Et3N) (1 mL) in 60 mL of dry chloroform was
added to the above solution under ice-cold conditions with stirring.
Then, the resulting mixture was allowed to stir at room tempara-
ture for 10 h, and then it was further refluxed for 1 h. The mixture
was cooled to room temperature and evaporated to dryness using
a rotary evaporator. Then, the crude product was purified by
column chromatography using silica gel as a stationary phase and
a chloroform/methanol mixed solvent (98:2, v/v) as the eluent.
Isolated yield of the compound L (yield was calculated on the basis
1
of the starting compounds): 48%. H NMR (500 MHz, CDCl3,
SiMe4, J (Hz), δ (ppm)): 7.96 (4H, d, J = 8.5, Ar-H16), 7.92-7.88
(8H, m, Ar-H17,20), 6.76 (4H, d, J = 9.0, Ar-H21), 3.38 (4H, br,
H
2,9), 3.21 (12H, br, H3,5,7,10,12,14), 3.13 (12H, s, H23 -N(CH3)2),
2.26 (4H, br, H6,13). 13C NMR (DMSO-d6, 500 MHz, SiMe4, δ
(ppm)): 155.05, 153.19, 142.56, 135.29, 128.90, 125.48, 122.32,
111.54, 48.11, 47.84, 47.63, 45.80, 39.8, 26.43. ESI-MS (þve
mode): m/z 775.93 (100%) (Mþ). Calcd for C38H50N10O4S2:
776.36. Elemental Anal. Calcd: C, 58.74; H, 6.75; N, 18.03.
Found: C, 58.9; H, 6.8; N, 18.1.
(12) (a) Choi, M. G.; Kim, Y. H.; Namgoong, J. E.; Chang, S. K. Chem.
Commun. 2009, 3560. (b) Zhao, Y.; Lin, Z.; He, C.; Wu, H.; Duan, C. Inorg.
Chem. 2007, 46, 1538. (c) Suresh, M.; Ghosh, A.; Das, A. Chem. Commun. 2008,
3906.
(13) Xue, X.; Wang, F.; Liu, X. J. Am. Chem. Soc. 2008, 130, 3244.
(14) (a) Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006,
8, 371. (b) McCleverty, J. A.; Meyer, T. J. Comprehensive Coordination
Chemistry, II; Elsevier: New York, 2003; Vol. 6. (c) Ho, M.-L.; Chen, K.-Y.;
Lee, G.-H.; Chen, Y.-C.; Wang, C.-C.; Lee, J.-F.; Chung, W.-J.; Chou, P.-T. Inorg.
Chem. 2009, 48, 10304. (d) Boiocchi, M.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D.;
Vazquez, M; Zampa, C. Chem. Commun. 2003, 1812.
Synthesis of L1. A total of 100 mg (0.31 mM) of 4-(4-dimethy-
lamino-phenylazo)-benzenesulphonyl chloride was added to 15 mL
of pyrrolidine (excess) under an inert atmosphere and heated to
reflux for 24 h. Then, the reaction mixture was evaporated to