T. Chatterjee et al. / Tetrahedron Letters 51 (2010) 6906–6910
6909
References and notes
1. For example, see: (a) Rizzo, F.; Cavazzini, M.; Righetto, S.; Angelis, F. De.;
Fantacci, S.; Quici, S. Eur. J. Org. Chem. 2010, 4004–4016; (b) Barsu, C.; Cheaib,
R.; Chambert, S.; Queneau, Y.; Maury, O.; Cottet, D.; Wege, H.; Douady, J.;
Bretonnière, Y.; Andraud, C. Org. Biomol. Chem. 2010, 8, 142–150; (c) Liu, C.-G.;
Guan, W.; Song, P.; Yan, L.-K.; Su, Z.-M. Inorg. Chem. 2009, 48, 6548–6554.
2. For example see: (a) Tao, Y.; Wang, Q.; Ao, L.; Zhong, C.; Yang, C.; Qin, J.; Ma, D.
J. Phys. Chem. C 2010, 114, 601–609; (b)Organic Light-Emitting Devices. Synthesis
Properties and Electronic Applications; Müllen, K., Scherf, U., Eds.; Wiley-VCH:
Weinheim, 2006; (c)Organic Electroluminescence; Kafafi, Z. H., Ed.Optical
Engineering; Taylor and Francis: Boca Raton, FL, 2005; Vol. 94,.
3. For review articles see: (a) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000,
100, 3553–3590; (b) Schubert, U. S.; Eschbaumer, C. Angew. Chem., Int. Ed. 2002,
41, 2892–2926; (c) Smith, A. P.; Fraser, C. L. In Comprehensive Coordination
Chemistry II; Elsevier, 2003; Vol. 1,
4. (a) Maury, O.; Bozec, H. L. Acc. Chem. Res. 2005, 38, 691–704. and the references
therein; (b) Bouder, T. L.; Viau, L.; Guégan, J.-P.; Maury, O.; Bozec, H. L. Eur. J.
Org. Chem. 2002, 3024–3033; (c) Aubert, V.; Ishow, E.; Ibersiene, F.; Boucekkine,
A.; Williams, J. A. G.; Toupet, L.; Me´tivier, R.; Nakatani, K.; Guerchais, V.; Bozec,
H. Le. New J. Chem. 2009, 33, 1320–1323; (d) Maury, O.; Guégan, J.-P.;
Renouard, T.; Hilton, A.; Dupau, P.; Sandon, N.; Toupet, L.; Bozec, H. Le. New J.
Chem. 2001, 25, 1553–1566.
5. (a) Araya, J. C.; Gajardo, J.; Moya, S. A.; Aguirre, P.; Toupet, L.; Williams, J. A. G.;
Escadeillas, M.; Bozec, H. Le.; Guerchais, V. New J. Chem. 2010, 34, 21–24; (b)
Willinger, K.; Fischer, K.; Kisselev, R.; Thelakkat, M. J. Mater. Chem. 2009, 19,
5364–5376; (c) Abbotto, A.; Bellotto, L.; Angelis, F. De.; Manfredi, N.; Marinzi, C.
Eur. J. Org. Chem. 2008, 5047–5054; (d) An, B.-K.; Burn, P. L.; Meredith, P. Chem.
Mater. 2009, 21, 3315–3324; (e) Grabulosa, A.; Martineau, D.; Beley, M.; Gros, P.
C.; Cazzanti, S.; Caramori, S.; Bignozzi, C. A. Dalton Trans. 2009, 63–70; (f)
Chatterjee, T.; Sarma, M.; Das, S. K. Tetrahedron Lett. 2010, 51, 1985–1988; (g)
Haberecht, M. C.; Schnorr, J. M.; Andreitchenko, E. V.; Clark, C. G., Jr.; Wagner,
M.; Müllen, K. Angew. Chem., Int. Ed. 2008, 47, 1662–1667.
Figure 3. Variation of Stokes’ shift (mabs
ꢂ mem) of TM 1–3 with solvent polarity
parameter ET(30). The absorption and emission intensities have been measured at
298 K. Concentration of the solutions have been adjusted such that OD ꢀ0.05. All
the excitations have been performed at the lowest energy absorption maxima. The
solvents are: hexane (32.4), toluene (33.9), THF (37.4), EtOAc (38.1), DCM (40.7),
DMF (43.2), MeCN (45.6), MeOH (55.4). Values in the parenthesis indicate the
ET(30) values of the solvents.20
6. (a) Kocian, O.; Mortimer, R. J.; Beer, P. D. J. Chem. Soc., Perkin Trans. 1 1990,
3203; (b) Abdel-Shafi, A. A.; Beer, P. D.; Mortimer, R. J.; Wilkinson, F. J. Phys.
Chem. A 2000, 104, 192–202; (c) Beer, P. D.; Kocian, O.; Mortimer, R. J.; Ridgway,
C. J. Chem. Soc., Dalton Trans. 1993, 2629–2638; (d) Beer, P. D.; Kocian, O.;
Mortimer, R. J.; Ridgway, C. J. Chem. Soc., Faraday Trans. 1993, 89, 333–338; (e)
Beer, P. D.; Kocian, O.; Mortimer, R. J.; Ridgway, C. Analyst 1992, 117, 1247–
1249; (f) Beer, P. D.; Kocian, O.; Mortimer, R. J.; Ridgway, C. J. Chem. Soc., Chem.
Commun. 1991, 1460–1463.
7. (a) Bozec, H. Le.; Renouard, T. Eur. J. Inorg. Chem. 2000, 229–239; (b) Sénéchal,
K.; Maury, O.; Bozec, H. Le.; Ledoux, I.; Zyss, J. J. Am. Chem. Soc. 2002, 124, 4560–
4561; (c) Maury, O.; Viau, L.; Sénéchal, K.; Corre, B.; Guégan, J.-P.; Renouard, T.;
Ledoux, I.; Zyss, J.; Bozec, H. Le. Chem. Eur. J. 2004, 10, 4454–4466; (d) Aubert,
V.; Guerchais, V.; Ishow, E.; Hoang-Thi, K.; Ledoux, I.; Nakatani, K.; Bozec, H. Le.
Angew. Chem., Int. Ed. 2008, 47, 577–580.
8. For example, see: (a) Jiang, K. J.; Masaki, N.; Xia, J. B.; Noda, S.; Yanagida, S.
Chem. Commun. 2006, 2460–2462; (b) Klein, C.; Nazeeruddin, M. K.; Liska, P.;
Censo, D. Di.; Hirata, N.; Palomares, E.; Durrant, J. R.; Grätzel, M. Inorg. Chem.
2005, 44, 178–180; (c) Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S.
M.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 808–809.
9. (a) Ulman, A. An Introduction to Ultrathin Organic Films from Langmuir–Blodgett
to Self-Assembly; Academic Press: San Diego, 1991; (b) Talham, D. R. Chem. Rev.
2004, 104, 5479–5502. and references therein.
10. Bolink, H. J.; Baranoff, E.; Clemente-León, M.; Coronado, E.; Lardiés, N.; López
Muñoz, A.; Repetto, D.; Nazeeruddin, M. K. Langmuir 2010, 26, 11461–11468.
11. Berner, D.; Klein, C.; Nazeeruddin, M. K.; Angelis, F. De.; Castellani, M.; Bugnon,
Ph.; Scopelliti, R.; Zuppirolid, L.; Graetzel, M. J. Mater. Chem. 2006, 16, 4468–
4474.
12. Chong, J. M.; Heuft, M. A.; Rabbat, P. J. Org. Chem. 2000, 65, 5837–5838.
13. (a) Chen, D.; De, R.; Mohler, D. L. Synthesis 2009, 211–216; (b) Ward, R. S.;
Branciard, D.; Dignan, R. A.; Pritchard, M. C. Heterocycles 2002, 56, 157–170.
14. (a) Gould, S.; Strouse, G. F.; Meyer, T. J.; Sullivan, B. P. Inorg. Chem. 1991, 30,
2942–2949; (b) Jang, S.-R.; Lee, C.; Choi, H.; Ko, J. J.; Lee, J.; Vittal, R.; Kim, K.-J.
Chem. Mater. 2006, 18, 5604–5608.
are estimated to be around 2.63 D, 3.20 D, and 1.27 D for TM 1–3,
respectively (see Supplementary data).
The spectroscopic properties of the synthesized chromophores,
TM 1–3, are found to remain unchanged over prolonged storage in
air, as indicated by the NMR and UV–visible spectroscopy, reveal-
ing their chemical inertness toward air or moisture. Thermo-gravi-
metric analyses have been performed on the compounds TM 1–3
under nitrogen and the respective thermogravimetric plots (see
Supplementary data) exhibit high thermal stability of these chro-
mophores. The thermal decomposition temperature of these com-
pounds (10% weight loss temperature) has been reported in
Table 1. These values are effectively higher indicating thermal
robustness of these chromophores.
In conclusion, three amphiphilic bipyridine chromophores have
been synthesized using appropriate reaction protocols and their
optical and thermal properties have been demonstrated. The posi-
tion of the absorption or emission band maxima is not found to be
dependent on the alkyl chain lengths. The optical properties of LB
films based on the amphiphilic and OPV mixed ligand coordination
complex surfactants will be reported in near future.
Acknowledgments
15. (a) Smith, A. P.; Lamba, J. J. S.; Fraser, C. L. Org. Synth. 2004, 10, 107–112; (b)
Fraser, C. L.; Anastasi, N. R.; Lamba, J. J. S. J. Org. Chem. 1997, 62, 9314–9317.
16. Characterization data for TM 1: This compound was obtained as a yellow solid
after acid-hydrolysis of the chromatographed Horner–Wordsworth–Emmons
product TM 10. Yield: 71%; mp: 122 °C (DTA); IR (KBr, cmꢂ1): 3371.87 (O–H),
2922.42–569.05 (multiple bands); 1H NMR (400 MHz, CDCl3): d = 8.62 (d,
J = 4 Hz, 2H), 8.48 (s, 2H), 7.45 (d, J = 8 Hz, 4H), 7.41 (d, J = 16 Hz, 2H), 7.35 (d,
J = 8 Hz, 2H), 6.91 (d, J = 16 Hz, 2H), 6.69 (d, J = 8 Hz, 4H), 3.65 (t, 4H, –CH2–OH),
3.35 (t, 4H, –N–CH2–), 2.99 (s, 6H, –N–CH3), 1.59–1.55 (unresolved, 8H, –N–
CH2–CH2–, –CH2–CH2–OH), 1.30 (unresolved, 28H, –CH2–); 13C NMR (100 MHz,
CDCl3): d = 156.4, 149.6, 149.3, 146.8, 133.6, 128.5, 123.8, 121.0, 120.5, 117.9,
111.8, 63.0, 52.6, 38.3, 32.8, 29.5, 27.1, 26.8, 25.8; LC–MS (positive mode) m/z:
731 (M+H)+; Anal. Calcd for. C48H66N4O2 (730.52): C, 78.86; H, 9.10; N, 7.66%.
Found: C, 78.83; H, 9.06; N, 7.71%.
The authors thank Department of Science and Technology
(DST), India (Project No. SR/S1/IC–23/2007) and Centre for Nano-
technology at University of Hyderabad for funding. 400 MHz
NMR facility at University of Hyderabad by DST, Govt. of India is
highly acknowledged. T.C. and M.S. thank CSIR and UGC, India,
respectively, for their fellowships. We thank Mr. S. Ghanta for help-
ing us while calculating the optimized structure of the chromoph-
ores. Useful discussion with Prof. T.P. Radhakrishnan is highly
acknowledged.
17. Characterization data for TM 2: Yellow solid; yield: 86%; mp: 110 °C (DTA); 1H
NMR (400 MHz, CDCl3): d = 8.63 (d, J = 4 Hz, 2H), 8.49 (s, 2H), 7.46–7.35 (m,
10H), 6.91 (d, J = 16 Hz, 2H), 6.69 (d, J = 8 Hz, 4H), 3.35 (t, 4H, –N–CH2–), 3.02 (s,
6H, –N–CH3), 1.60 (unresolved, 4H, –N–CH2–CH2–), 1.32 (unresolved, 48H, –
CH2–), 0.90–0.87 (unresolved, 6H, –CH2–CH3); 13C NMR (100 MHz, CDCl3):
Supplementary data
Supplementary data associated with this article can be found, in