E. Attolino et al. / European Journal of Medicinal Chemistry 45 (2010) 5919e5925
5925
2.42 (bs, 1H). 13C NMR (50 MHz, CDCl3):
114.3, 70.1, 63.4, 55.5, 52.4, 52.1, 50.2.
d 170.6, 163.1, 130.1, 129.4,
[12] L. Aureli, M. Gioia, I. Cerbara, S. Monaco, G.F. Fasciglione, S. Marini, P. Ascenzi,
A. Topai, M. Coletta, Structural bases for substrate and inhibitor recognition by
matrix metalloproteinases, Curr. Med. Chem. 15 (2008) 2192e2222.
[13] C.M. Overall, O. Kleifeld, Towards third generation matrix metalloproteinase
inhibitors for cancer therapy, Br. J. Cancer 94 (2006) 941e946.
[14] T. Masuda, Y. Nakayama, Development of a water-soluble matrix metal-
loproteinase inhibitor as an intra-arterial infusion drug for prevention of
restenosis after angioplasty, J. Med. Chem. 46 (2003) 3497e3501.
[15] M. Fragai, C. Nativi, B. Richichi, C. Venturi, Design in silico, synthesis and
binding evaluation of a carbohydrate-based scaffold for structurally novel
inhibitors of matrix metalloproteinases, ChemBioChem 6 (2005) 1345e1349.
[16] V. Calderone, M. Fragai, C. Luchinat, C. Nativi, B. Richichi, S. Roelens, A high-
affinity carbohydrate-containing inhibitor of matrix metalloproteinases,
ChemMedChem 1 (2006) 598e601.
[17] D.N. Meli, J.M. Loeffler, P. Baumann, U. Neumann, T. Buhl, D. Leppert, S.L. Leib,
In pneumococcal meningitis a novel water-soluble inhibitor of matrix met-
alloproteinases and TNF-alpha converting enzyme attenuates seizures and
injury of the cerebral cortex, J. Neuroimmunol. 151 (2004) 6e11.
[18] L. Devel, V. Rogakos, A. David, A. Makaritis, F. Beau, P. Cuniasse, A. Yiotakis,
V. Dive, Development of selective inhibitors and substrate of matrix metal-
loproteinase-12, J. Biol. Chem. 281 (2006) 11152e11160.
[19] J. Lauer-Fields, K. Brew, J.K. Whitehead, S. Li, R.P. Hammer, G.B. Fields, Triple-
helical transition state analogues: a new class of selective matrix metal-
loproteinase inhibitors, J. Am. Chem. Soc. 129 (2007) 10408e10417.
[20] L.G. Monovich, R.A. Tommasi, R.A. Fujimoto, V. Blancuzzi, K. Clark,
W.D. Cornell, R. Doti, J. Doughty, J. Fang, D. Farley, J. Fitt, V. Ganu, R. Goldberg,
R. Goldstein, S. Lavoie, R. Kulathila, W. Macchia, D.T. Parker, R. Melton,
E. O’Byrne, G. Pastor, T. Pellas, E. Quadros, N. Reel, D.M. Roland, Y. Sakane,
H. Singh, J. Skiles, J. Somers, K. Toscano, A. Wigg, S.Y. Zhou, L.J. Zhu, W.C. Shieh,
S. Xue, L.W. McQuire, Discovery of potent, selective, and orally active
carboxylic acid based inhibitors of matrix metalloproteinase-13, J. Med. Chem.
52 (2009) 3523e3538.
[21] L.J. MacPherson, E.K. Bayburt, M.P. Capparelli, B.J. Carroll, R. Goldstein,
M.R. Justice, L. Zhu, S. Hu, R.A. Melton, L. Fryer, R.L. Goldberg, J.R. Doughty,
S. Spirito, V. Blancuzzi, D. Wilson, E.M. O’Byrne, V. Ganu, D.T. Parker, Discovery
of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor
that blocks cartilage degradation in rabbits, J. Med. Chem. 40 (1997)
2525e2532.
5.3. General procedure for the synthesis of hydroxamic acids.
Synthesis of compound 17
A suspension of KOH (168 mg, 3.00 mmol) and NH2OH$HCl
(167 mg, 2.40 mmol) in CH3OH (2 mL) was stirred at room
temperature for 1 h, then a solution of 15 þ 16 (0.60 mmol) in
CH3OH (2 mL) was added. The reaction mixture was stirred until no
trace of starting material was revealed by TLC analysis (18 h), then
concentrated to dryness. The crude product was dissolved in EtOAc,
washed with a mixture AcOH/H2O 1:1 and dried over Na2SO4.
Concentration of the solvent under vacuum affords a crude product
which was purified by HPLC (C8 column Ultrasphere Beckman
Coulter, AcCN/H2O 10:90, AcCN/H2O 30:70) to afford 17 (90.0 mg,
45%) as a pale yellow glassy solid. [
a
]
2D5: ꢀ22.3(c 0.48, CH3OH).
HRMS for C12H19N2O7S þ H calcd: 335,0913. Found: 335.0909. ESI-
MS [M þ H]þ calcd: 335.1. Found: 335.1. [M þ Na]þ calcd: 357.1.
Found: 357.1. 1H NMR (400 MHz, CD3OD):
d 7.73e7.70 (AA’ part of
an AA’MM’ system, JAM ¼ 8.8 Hz, 2H), 7.05e7.03 (MM’ part of
a AA’MM’ system, JAM ¼ 8.8 Hz, 2H), 3.90e3.78 (m, 3H, CH2-2, H-20),
3.88 (s, 3H, OCH3), 3.52e3.51 (m, 2H, CH-30), 3.35e3.30 (m, 1H, H-
10a), 3.17e3.11 (B part of an ABX system, JBx ¼ 8.8 Hz, JAB ¼ 14.4 Hz,
1H, H-10b). 13C NMR (50 MHz, CD3OD):
114.0, 70.5, 63.6, 54.9, 53.4, 50.0.
d 167.3, 163.3, 129.7, 129.3,
Acknowledgements
[22] A.Y. Jeng, M. Chou, D.T. Parker, Sulfonamide-based hydroxamic acids as potent
inhibitors of mouse macrophage metalloelastase, Bioorg. Med. Chem. Lett. 8
(1998) 897e902.
[23] R.P. Beckett, A.H. Davidson, A.H. Drummond, P. Huxley, M. Whittaker,
Preclinical and clinical studies of MMP inhibitors in cancer, Drug Discov.
Today 1 (1996) 16e26.
Author thank Dr. Stefano Roelens for fruitful discussions. This
work was supported by EC (Projects: SFMET nꢁ 201640, SPINE2-
COMPLEXES nꢁ 031220), by MIUR (Prot. RBLA032ZM7, Prot.
RBIP06LSS2), and Ente Cassa di Risparmio di Firenze.
[24] M. Whittaker, C.D. Floyd, P. Brown, A.J. Gearing, Design and therapeutic appli-
cation of matrix metalloproteinase inhibitors, Chem. Rev. 99 (1999) 2735e2776.
[25] I. Bertini, V. Calderone, M. Cosenza, M. Fragai, Y.-M. Lee, C. Luchinat,
S. Mangani, B. Terni, P. Turano, Conformational variability of matrix metal-
loproteinases: beyond a single 3D structure, Proc. Natl. Acad. Sci. U S A 102
(2005) 5334e5339.
[26] J.W. Skiles, N.C. Gonnella, A.Y. Jeng, The design, structure, and therapeutic
application of matrix metalloproteinase inhibitors, Curr. Med. Chem. 8 (2001)
425e474.
Appendix. Supplementary material
Supplementary data related to this article can be found online at
References
[27] A. Juengel, C. Ospelt, M. Thiel, M. Lesch, O. Schorr, B.A. Michel, R.E. Gay,
C. Kolling, C. Flory, S. Gay, M. Neidhart, Effect of the oral application of a highly
selective MMP-13 inhibitor in three different animal models of rheumatoid
arthritis, Ann. Rheum. Dis. 69 (2010) 898e902.
[28] H. Takaishi, T. Kimura, S. Dalal, Y. Okada, J. D’Armiento, Joint diseases and
matrix metalloproteinases: a role for MMP-13, Curr. Pharm. Biotechnol. 9
(2008) 47e54.
[29] R.E. Galardy, M.E. Cassabonne, C. Giese, J.H. Gilbert, F. Lapierre, H. Lopez,
M.E. Schaefer, R. Stack, M. Sullivan, B. Summers, R. Tressler, D. Tyrrell, J. Wee,
S.D. Allen, J.J. Castellot, J.P. Barletta, G.S. Schultz, L.A. Fernandez, S. Fisher,
T.Y. Cui, H.G. Foellmer, D. Grobelny, W.M. Holleran, Inhibition of matrix
metalloproteinases: therapeutic Potential, Ann. New York Acad. Sci. V 732
(1994) 315e323.
[30] S.J. Giebel, G. Menicucci, P.G. McGuire, Matrix metalloproteinases in early
diabetic retinopathy and their role in alteration of the blood-retinal barrier A,
Das. Lab. Invest. 85 (2005) 597e607.
[1] E. Freire, Do enthalpy and entropy distinguish first in class from best in class?
Drug Discov. Today 13 (2008) 869e874.
[2] S. Zucker, J. Cao, W.T. Chen, Critical appraisal of the use of matrix metal-
loproteinase inhibitors in cancer treatment, Oncogene 19 (2000) 6642e6650.
[3] F. Mannello, Natural bio-drugs as matrix metalloproteinase inhibitors: new
perspectives on the horizon, Recent Patents Anti-Cancer Drug Discov. 1 (2006)
91e103.
[4] M. Pavlaki, S. Zucker, Matrix metalloproteinase inhibitors (MMPIs): the
beginning of phase I or the termination of phase III clinical trials, Cancer
Metastasis Rev. 22 (2003) 177e203.
[5] J.W. Skiles, N.C. Gonnella, A.Y. Jeng, The design, structure, and clinical update
of small molecular weight matrix metalloproteinase inhibitors, Chem-
MedChem 11 (2004) 2911e2977.
[6] B.G. Rao, Recent developments in the design of specific matrix metal-
loproteinase inhibitors aided by structural and computational studies, Curr.
Pharm. Des. 11 (2005) 295e322.
[7] E. Nuti, L. Panelli, F. Casalini, S.I. Avramova, E. Orlandini, S. Santamaria,
S. Nencetti, T. Tuccinardi, A. Martinelli, G. Cercignani, N. D’Amelio, A. Maiocchi,
F. Uggeri, A. Rossello, Design, synthesis, biological evaluation, and NMR
studies of a new series of arylsulfones as selective and potent matrix metal-
loproteinase-12 inhibitors, J. Med. Chem. 52 (2009) 6347e6361.
[8] A. Agrawal, D. Romero-Perez, J.A. Jacobsen, F.J. Villarreal, S.M. Cohen, Zinc-
binding groups modulate selective inhibition of MMPs, ChemMedChem 3
(2008) 812e820.
[9] P. Janser, U. Neumann, W. Miltz, R. Felfel, T. Buhl, A cassette-dosing approach
for improvement of oral bioavailability of dual TACE/MMP inhibitors, Bioorg.
Med. Chem. Lett. 16 (2006) 2632e2636.
[10] X.M. He, D.C. Carter, Atomic structure and chemistry of human serum
albumin, Nature 358 (1992) 209e215.
[31] K. Ohno-Matsui, T. Uetama, T. Yoshida, M. Hayano, T. Itoh, I. Morita,
M. Mochizuki, Reduced retinal angiogenesis in MMP-2-deficient mice Inves-
tigative Ophthalmology & Visual Science 44 (2003) 5370e5375.
[32] Y. Adachi, H. Yamamoto, F. Itoh, Y. Hinoda, Y. Okada, K. Imai, Contribution of
matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers,
Gut 45 (1999) 252e258.
[33] W. Hornebeck, Down-regulation of tissue inhibitor of matrix metalloprotease-
1
(TIMP-1) in aged human skin contributes to matrix degradation and
impaired cell growth and survival, Pathol. Biol. 51 (2003) 569e573.
[34] I. Bertini, V. Calderone, M. Fragai, A. Giachetti, M. Loconte, C. Luchinat,
M. Maletta, C. Nativi, K.J. Yeo, Exploring the subtleties of drug-receptor
interactions: the case of matrix metalloproteinases, J. Am. Chem. Soc. 129
(2007) 2466e2475.
[35] F.J. Moy, P.K. Chanda, J. Chen, S. Cosmi, W. Edris, J.I. Levin, T.S. Rush,
J. Wilhelm, R. Powers, Impact of mobility on structure-based drug design for
the MMPs, J. Am. Chem. Soc. 124 (2002) 12658e12659.
[11] L.M. Coussens, B. Fingleton, L.M. Matrisian, Matrix metalloproteinase inhibi-
tors and cancer: trials and tribulations, Science 295 (2002) 2387e2392.