pubs.acs.org/joc
Gold(I)-Catalyzed Intramolecular Tandem Addition/Friedel-Crafts
Reactions between Acyclic Enamides and 1-Arylalkynes
Jennifer A. Kozak, Brian O. Patrick,† and Gregory R. Dake*
Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, B.C., Canada,
V6T 1Z1. †Correspondence regarding crystal structures should be directed to Dr. Patrick, Manager,
UBC X-ray Crystallographic Facility
Received October 13, 2010
Electron-deficient acyclic enamine derivatives react with electron-rich 1-arylalkynes using cationic
gold(I) species as catalysts in an intramolecular process to form annulated 1-amido-substituted
indene derivatives as the major products. Yields for this process range between 21% and 98%. In
some cases, a two-step process that includes a subsequent alkene isomerization is needed.
Introduction
(enesulfonamides), N-carbamoyl enamines (enecarbamates), or
N-acyl enamines (enamides)] serving as nucleophiles in order to
form relatively complex nitrogen-containing ring systems.7 For
example, our group recently disclosed a cyclization in which
a cyclic enamine derivative of general structure 1 reacted to
produce largely compounds of type 2 within a mixture of
isomers (Scheme 1, path a).7a An important question that we
Additions of carbon nucleophiles to activated C-Cπsystems
are of fundamental importance in synthetic organic chemistry.
The use of catalytic amounts of electrophilic metal salts to
activate C-C π systems toward nucleophilic attack has been a
topic of much scholarly interest.1 Important examples of this
reactivity paradigm forming C-C bonds include the addition of
β-dicarbonyl compounds (Conia-ene),2 enol silyl ethers,3 allyl-
silanes or allylstannanes,4 functionalized indoles,5 and enamines
generated in situ.6 Our interest in this area stems from the use of
electron-deficient enamine derivatives [N-arylsulfonyl enamines
ꢀ
(4) (a) Porcel, S.; Lopez-Carrillo, V.; Garcıa-Yebra, C.; Echavarren,
´
A. M. Angew. Chem., Int. Ed. 2008, 47, 1883–1886. (b) Matsuda, T.;
Kadowaki, S.; Yamaguchi, Y.; Murakami, M. Chem. Commun. 2008,
ꢀ
2744–2746. (c) Mendez, M.; Echavarren, A. M. Eur. J. Org. Chem. 2002,
ꢀ
ꢀ
15–28. (d) Fernandez-Rivas, C.; Mendez, M.; Nieto-Oberhuber, C.; Echa-
varren, A. M. J. Org. Chem. 2002, 67, 5197–5201. (e) Martın-Matute, B.;
´
~
ꢀ
ꢀ
Bunuel, E.; Mendez, M.; Nieto-Oberhuber, C.; Cardenas, D. J.; Echavarren,
A. M. J. Organomet. Chem. 2003, 687, 410–419. (f) Asao, N.; Shimada, T.;
Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 10899–10902. (g)
Asao, N.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3797–
3798. (h) Yoshikawa, E.; Gevorgyan, V.; Asao, N.; Yamamoto, Y. J. Am.
Chem. Soc. 1997, 119, 6781–6786. (i) Asao, N.; Yoshikawa, E.; Yamamoto,
Y. J. Org. Chem. 1996, 61, 4874–4875. (j) Asao, N.; Matsukawa, Y.;
Yamamoto, Y. Chem. Commun. 1996, 1513–1514. (k) Matsukawa, Y.; Asao,
N.; Kitahara, H.; Yamamoto, Y. Tetrahedron 1999, 55, 3779–3790.
(5) (a) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533–
9537. (b) Han, X.; Lu, X. Org. Lett. 2009, 11, 2381–2384. (c) Kong, W.; Cui,
J.; Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 1213–1216. (d) Huang, H.;
Peters, R. Angew. Chem., Int. Ed. 2009, 48, 604–606. (e) Liu, C.;
Widenhoefer, R. A. Chem.;Eur. J. 2006, 12, 2371–2382. (f) Han, X.;
Widenhoefer, R. A. Org. Lett. 2006, 8, 3801–3804. (g) Liu, C.; Han, X.;
Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700–3701.
(h) Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 10250–10251.
(6) (a) Duschek, A.; Kirsch, S. F. Angew. Chem., Int. Ed. 2008, 47, 5703–
5705. (b) Jensen, K. L.; Franke, P. T.; Arroniz, C.; Kobbelgaard, S.;
Jorgensen, K. A. Chem.;Eur. J. 2010, 16, 1750–1753.
(1) For recent reviews surveying the reactions promoted by electrophilic
€
Soriano, E.; Marco-Contelles, J. Acc. Chem. Res. 2009, 42, 1026–1036. (c) Li,
Z. G.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265. (d) Hashmi,
A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766–1775. (e) Arcadi, A.
metals, see: (a) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221. (b)
€
Chem. Rev. 2008, 108, 3266–3325. (f) Furstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410–3449. (g) Chianese, A. R.; Lee, S. J.; Gagne,
ꢀ
M. R. Angew. Chem., Int. Ed. 2007, 46, 4042–4059. (h) Zhang, L.; Sun, J.;
Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271–2296. (i) Michelet, V.;
^
Toullec, P., Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268–4315.
(2) (a) Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon, D. J.
J. Am. Chem. Soc. 2009, 131, 9140–9141. (b) Corkey, B. K.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 17168–17169. (c) Gao, Q.; Zheng, B.-F.; Li,
J.-H.; Yang, D. Org. Lett. 2005, 7, 2185–2188. (d) Kuninobu, Y.; Kawata, A.;
Takai, K. Org. Lett. 2005, 7, 4823–4825. (e) Kennedy-Smith, J. J.; Staben,
S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526–4527. (f) Staben, S. T.;
Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350–
5352. (g) Yao, X.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 6884–6885.
(3) (a) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.;
Lalonde, R. L.; Toste, F. D. Angew. Chem., Int. Ed. 2006, 45, 5991–5994. (b)
Linghu, X.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2007,
46, 7671–7673. (c) Lee, K.; Lee, P. H. Adv. Synth. Catal. 2007, 349, 2092–
2096. (d) Minnihan, E. C.; Colletti, S. L.; Toste, F. D.; Shen, H. C. J. Org.
Chem. 2007, 72, 6287–6289.
(7) (a) Kozak, J. A.; Dodd, J. M.; Harrison, T. J.; Jardine, K. J.; Patrick,
B. O.; Dake, G. R. J. Org. Chem. 2009, 74, 6929–6935. (b) Kozak, J. A.;
Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221–4223. (c) Harrison, T. J.;
Patrick, B. O.; Dake, G. R. Org. Lett. 2006, 9, 367–370. (d) Harrison, T. J.;
Dake, G. R. Org. Lett. 2004, 6, 5023–5026.
DOI: 10.1021/jo102036n
r
Published on Web 11/18/2010
J. Org. Chem. 2010, 75, 8585–8590 8585
2010 American Chemical Society