10.1002/ejoc.201800013
European Journal of Organic Chemistry
COMMUNICATION
[2]
For recent representative examples of the synthesis of
dihydrobenzopyran derivatives, see: a) S. B. Bharate, R. Mudududdla,
J. B. Bharate, N. Battini, S. Battula, R. R. Yadav, B. Singh, R. A.
Vishwakarma, Org. Biomol. Chem. 2012, 10, 5143; b) Y. Wang, R.
Franzén, Synlett 2012, 23, 925; c) R. R. R. Taylor, R. A. Batey, J. Org.
Chem. 2013, 78, 1404; d) X.-G. Song, S.-F. Zhu, X.-L. Xie, Q.-L. Zhou,
Angew. Chem. 2013, 125, 2615; Angew. Chem. Int. Ed. 2013, 52,
2555; e) R. Miyaji, K. Asano, S. Matsubara, Org. Biomol. Chem. 2014,
12, 119; f) S. E. Ammann, G. T. Rice, M. C. White, J. Am. Chem. Soc.
2014, 136, 10834; g) J. E. Lee, T. H. Kwon, S. J. Gu, D.-H. Lee, B. M.
kim, J. Y. Lee, J. K. Lee, S. H. Seo, A. N. Pae, G. Keum, Y. S. Cho,
S.-J. Min, Org. Biomol. Chem. 2014, 12, 5669; h) Z.-C. Geng, S.-Y.
Zhang, N.-K. Li, N. Li, J. Chen, H.-Y. Li, X.-W. Wang, J. Org. Chem.
2014, 79, 10772; i) V. V. Pagar, C.-C. Tseng, R.-S. Liu, Chem. Eur. J.
2014, 20, 10519; j) P. Saha, A. Biswas, N. Molleti, V. K. Singh, J. Org.
Chem. 2015, 80, 11115; k) W. Yang, Y. Liu, S. Zhang, Q. Cai, Angew.
Chem. 127, 8929; Angew. Chem. Int. Ed. 2015, 54, 8805; l) K.
Tangdenpaisal, K. Chuayboonsong, P. Sukjarean, V. Katesampao, N.
Noiphrom, S. Ruchirawat, P. Ploypradith, Chem. Asian. J. 2015, 10,
1050; m) A. Kebberg, P. Metz, Angew. Chem. 2016, 128, 1173;
Angew. Chem. Int. Ed. 2016, 55, 1160; n) A. Kebberg, P. Metz, Org.
Lett. 2016, 18, 6500; o) N. Shiraishi, M. Kumazoe, S. Fuse, H.
Tachibana, H. Tanaka, Chem. Eur. J. 2016, 22, 13050; p) A. G. K.
Reddy, J. Krishna, G. Satyanarayana, ChemistrySelect 2016, 6, 1151;
q) M. A. Arai, Y. Yamaguchi, M. Ishibashi, Org. Biomol. Chem. 2017,
15, 5025; r) S. Shee, B. Paul, D. Panja, B. C. Roy, K. Chakrabarti, K.
Ganguli, A. Das, G. K. Das, S. Kundu, Adv. Synth. Catal. 2017, 359,
3888; s) K. Tangdenpaisal, K. Chuayboonsong, S. Ruchirawat, P.
Ploypradith, J. Org. Chem. 2017, 82, 2672.
n
n
TFA (5 equiv)
Et3SiH (5 equiv)
OH
OMe
CH2Cl2 (0.02 M)
0 °C, 1 h
O
HO
OMe
9 (n = 1)
11 (n = 2)
10 (n = 1): 63% yield
12 (n = 2): 63% yield
Scheme 6. Substrate Scope.
Conclusions
In conclusion, we developed a novel method for synthesizing 2-
(4-hydroxyaryl)-3,4-fused tricyclic dihydrobenzopyrans with 2,3-
syn and 3,4-syn motifs based on the acid-promoted cascade
cyclization via vinylidene para-quinone methide intermediates.
Using easily prepared linear substrates, a series of five to
seven-membered ring-fused dihydrobenzopyran derivatives
were obtained in moderate to excellent yield in a highly
diastereoselective manner. The developed method provided
new access to potent and selective ERb agonists. The present
work demonstrated the synthetic utility of vinylidene para-
quinone methide intermediates. Further studies on the
application of this intermediate to complex molecule synthesis
are in progress.
[3]
a) B. H. Norman, J. A. Dodge, T. I. Richardson, P. S. Borromeo, C. W.
Lugar, S. A. Jones, K. Chen, Y. Wang, G. L. Durst, R. J. Barr, C.
Montrose-Rafizadeh, H. E. Osborne, R. M. Amos, S. Guo, A.
Boodhoo, V. Krishnan, J. Med. Chem. 2006, 49, 6155; b) T. I.
Richardson, B. H. Norman, C. L. Lugar, S. A. Jones, Y. Wang, J. D.
Durbin, V. Krishnan, J. A. Dodge, Bioorg. Med. Chem. Lett. 2007, 17,
3570.
Experimental Section
General Procedure for the Acid-Promoted Cascade Cyclization
(Table 1, entry 5): To a stirred solution of 5a (29.6 mg, 0.1 mmol) in
CH2Cl2 (5.0 mL) at 0 °C was added Et3SiH (80 µL, 0.5 mmol) and TFA
(38 µL, 0.5 mmol). After being stirred for 1 h at 0 °C, the reaction
mixture was concentrated in vacuo. The residue was purified by silica
gel column chromatography to give the desired products 6a (24.7 mg)
in 87% yield. IR (ATR) ν 2952, 2869, 1612, 1582, 1455, 1303, 1175,
1034, 993, 823 cm-1; 1H NMR (400 MHz, CDCl3): d 7.39 (2H, d, J = 8.8
Hz), 7.18 (1H, d, J = 8.0 Hz), 7.10 (1H, ddd, J = 8.4, 8.4, 2.0 Hz), 6.96–
6.88 (4H, m), 5.13 (1H, d, J = 2.4 Hz), 3.82 (3H, s), 3.52 (1H, ddd, J =
8.0, 8.0, 2.4 Hz), 2.64–2.55 (1H, m), 2.20–2.09 (1H, m), 1.88–1.80 (1H,
m), 1.70–1.59 (1H, m), 1.53–1.35 (3H, m); 13C NMR (100 MHz, CDCl3):
d 158.7, 155.4, 133.4, 129.1, 127.4, 126.8 (2C), 126.7, 121.3, 117.1,
113.6 (2C), 77.2, 55.3, 45.3, 39.6, 34.9, 23.7, 23.5; HRMS (ESI-TOF):
m/z: Calcd. for C19H19O2– [M-H] –: 279.1391; found: 279.1400.
[4]
a) T. Yokosaka, T. Nemoto, Y. Hamada, Chem. Commun. 2012, 48,
5431; b) T. Yokosaka, H. Nakayama, T. Nemoto, Y. Hamada, Org.
Lett. 2013, 15, 2978; c) T. Yokosaka, T. Nemoto, Y. Hamada,
Tetrahedron Lett. 2013, 54, 1562; d) T. Yokosaka, T. Kanehira, H.
Nakayama, T. Nemoto, Y. Hamada, Tetrahedron 2014, 70, 2151; e) T.
Yokosaka, N. Shiga, T. Nemoto, Y. Hamada, J. Org. Chem. 2014, 79,
3866; f) T. Yokosaka, T. Nemoto, H. Nakayama, N. Shiga, Y. Hamada,
Chem. Commun. 2014, 50, 12775; g) Y. Suzuki, T. Nemoto, S.
Nakano, Z. Zhao, Y. Yoshimatsu, Y. Hamada, Tetrahedron Lett. 2014,
55, 6726.
[5]
[6]
[7]
For reviews on the synthetic methods using a phenol dearomatization
process, see: a) L. Pouysegu, D. Deffieux, S. Quideau, Tetrahedron
2010, 66, 2235; b) Q. Ding, Y. Ye, R. Fang, Synthesis 2013, 45, 1; c)
W. Sun, G. Li, L. Hong, R. Wang, Org. Biomol. Chem. 2016, 14, 2164;
d) W.-T. Wu, L. Zhang, S.-L. You, Chem. Soc. Rev. 2016, 45, 1570.
For reviews on the synthetic methods using quinone methide
intermediates, see: a) T. P. Pathak, M. S. Sigman, J. Org. Chem.
2011, 76, 9210; b) M. S. Singh, A. Nagaraju, N. Anand, S. Chowdhury,
RSC Adv. 2014, 4, 55924; c) W.-J. Bai, J. G. David, Z.-G. Feng, M. G.
Weaver, K.-L. Wu, T. R. R. Pettus, Acc. Chem. Res. 2014, 47, 3655.
Vinylidene ortho-quinone methide intermediates in organic synthesis,
see: a) M. Furusawa, K. Arita, T. Imahori, K. Igawa, K. Tomooka, R.
Irie, Tetrahedron Lett. 2013, 54, 7107; b) X. Wu, L. Xue, D. Li, S. Jia,
J. Ao, J. Deng, H. Yan, Angew. Chem. 2017, 129, 13910; Angew.
Chem. Int. Ed. 2017, 56, 13722.
Acknowledgements
This work was supported financially by JSPS KAKENHI Grant
Number 15K07850, and Chiba University.
Keywords: Cascade reaction • dihydrobenzopyrans • synthetic
method
[1]
For reviews, see: a) K. Oyama, K. Yoshida, T. Kondo, Curr. Org.
Chem. 2011, 15, 2567; b) K. Ohmori, Chem. Rec. 2011, 11, 252; b) T.
Asakawa, Y. Hamashima, T. Kan, Curr. Pharm. Des., 2013, 19, 6207.
This article is protected by copyright. All rights reserved.