8764 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 24
Zhu et al.
a density of 3 ꢀ 105 cells/well in R-MEM with 10% FBS, 100 ng/
mL RANKL, and 30 ng/mL M-CSF (on differentiation day 0).
Multinucleated osteoclasts were observed from differentiation
day 6 onward.
RANKL expression and signaling. J. Biol. Chem. 2009, 284, 13725–
13734. (b) Qiu, S. X.; Dan, C.; Ding, L.-S.; Peng, S.; Chen, S.-N.;
Farnsworth, N. R.; Nolta, J.; Gross, M. L.; Zhou, P. A triterpene
glycoside from black cohosh that inhibits osteoclastogenesis by mod-
ulating RANKL and TNFR signaling pathways. Chem. Biol. 2007, 14,
860–869. (c) Kawatani, M.; Okumura, H.; Honda, K.; Kanoh, N.;
Muroi, M.; Dohmae, N.; Takami, M.; Kitagawa, M.; Futamura, Y.;
Osada, H. The identification of an osteoclastogenesis inhibitor through
the inhibition of glyoxalase I. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
11691–11696. (d) Kita, M.; Kondo, M.; Koyama, T.; Yamada, K.;
Matsumoto, T.; Lee, K.-H.; Woo, J.-T.; Uemura, D. Symbioimine
exhibiting inhibitory effect of osteoclast differentiation from the sym-
biotic marine dinoflagellate Symbiodinium sp. J. Am. Chem. Soc.
2004, 126, 4794–4795.
TRAP Staining and Activity Assay. To identify compound
with the potential to inhibit the RANKL-induced osteoclasto-
genesis, RAW264.7 cells were suspended in R-MEM with 10%
FBS and 100 ng/mL RANKL and then plated in a 96-well plate
at a density of 1 ꢀ 103 cells/well. After 24 h, cells were treated
with compound or vehicle (DMSO). On differentiation day 4,
cells were fixed with 10% formalin for 10 min and ethanol/
acetone (1:1) for 1 min and then stained with a leukocyte acid
phosphatase kit 387-A (Sigma, MO, USA). Images of the cells
were captured by a microscope with DP Controller (Olympus
Optical, Japan). To measure the TRAP activity, osteoclasts
were fixed with 10% formalin for 10 min and 95% ethanol for
1 min, and then 100 μL of citrate buffer (50 mM, pH 4.6) containing
10 mM sodium tartrate and 5 mM p-nitrophenylphosphate (Sigma,
MO, USA) was added to the fixed cells-containing wells of a 96-well
plate. After incubation for 1 h, the enzyme reaction mixtures in the
wells were transferred to new plates containing 100 μL of 0.1 N
NaOH. Absorbance was measured at 410 nm using a Wallac
EnVision microplate reader (PerkinElmer, Finland). The experi-
ment was performed in triplicate, and the significance was deter-
mined by using the Student’s t test and the differences were
considered to be significant at P < 0.05.
(9) (a) An, H.; Eum, S. J.; Koh, M.; Lee, S. K.; Park, S. B. Diversity-
oriented synthesis of privileged benzopyranyl heterocycles from
s-cis-enones. J. Org. Chem. 2008, 73, 1752–1761. (b) Ko, S. K.; Jang,
H. J.; Kim, E.; Park, S. B. Concise and diversity-oriented synthesis of
novel scaffolds embedded with privileged benzopyran motif. Chem.
Commun. 2006, 2962–2964. (c) Sagar, R.; Park, S. B. Facile and
efficient synthesis of carbohybrids as stereodivergent druglike small
molecules. J. Org. Chem. 2008, 73, 3270–3273. (d) Kim, Y.; Kim, J.;
Park, S. B. Regioselective synthesis of tetrasubstituted pyrroles by 1,
3-dipolar cycloaddition and spontaneous decarboxylation. Org. Lett.
2009, 11, 17–20. (e) Lee, S.; Park, S. B. An efficient one-step synthesis
of heterobiaryl pyrazolo[3,4-b]pyridines via indole ring opening. Org.
Lett. 2009, 11, 5214–5217.
(10) (a) Lee, S.-C.; Park, S. B. Solid-phase parallel synthesis of natural
product-like diaza-bridged heterocycles through Pictet-Spengler
intramolecular cyclization. J. Comb. Chem. 2006, 8, 50–57. (b) Lee,
S.-C.; Park, S. B. Practical solid-phase parallel synthesis of Δ5-
2-oxopiperazines via N-acyliminium ion cyclization. J. Comb. Chem.
2007, 9, 828–835. (c) Lee, S.-C.; Park, S. B. Novel application of
Leuckart-Wallach reaction for synthesis of tetrahydro-1,4-benzodia-
zepin-5-ones library. Chem. Commun. 2007, 3714–3716. (d) Park,
S. O.; Kim, J.; Koh, M.; Park, S. B. Efficient Parallel Synthesis of
Privileged Benzopyranylpyrazoles via Regioselective Condensation
of β-Keto Aldehydes with Hydrazines. J. Comb. Chem. 2009, 11,
315–326.
(11) (a) Collin-Osdoby, P.; Yu, X.; Zheng, H.; Osdoby, P. RANKL-
mediated osteoclast formation from murine RAW 264.7 cells.
Methods Mol. Med. 2003, 80, 153–166. (b) Cuetara, B. L.; Crotti,
T. N.; O'Donoghue, A. J.; McHugh, K. P. Cloning and characterization
of osteoclast precursors from the RAW264.7 cell line. In Vitro Cell
Dev. Biol. Anim. 2006, 42, 182–188.
(12) Chen, T.; Knapp, A. C.; Wu, Y.; Huang, J.; Lynch, J. S.; Dickson,
J., Jr; Lawrence, R. M.; Feyen, J. H.M.; Agler, M. L. High
throughput screening identified a substituted imidazole as a novel
RANK pathway-selective osteoclastogenesis inhibitor. Assay Drug
Dev. Technol. 2006, 4, 387–396.
Acknowledgment. This work was supported by (1) the Na-
tional Research Foundation of Korea (NRF), (2) the WCU
program through the NRF funded by the Korean Ministry of
Education, Science and Technology (MEST), and (3) the Korea
Healthcare Technology R&D Project, Ministry of Health, Wel-
fare and Family Affairs, Korea (A084242 for S.H.K.). M.Z. and
S.L. are grateful for the fellowship award of the BK21 Program
and Seoul Science Fellowship award.
Supporting Information Available: All experimental proce-
dures, spectroscopic characterization data of all new com-
pounds, and procedures for biological studies (pdf and cif).
This material is available free of charge via the Internet at http://
pubs.acs.org.
(13) Galibert, L.; Tometsko, M. E.; Anderson, D. M.; Cosman, D.;
Dougall, W. C. The involvement of multiple tumor necrosis factor
receptor (TNFR)-associated factors in the signaling mechanisms of
receptor activator of NF-κB, a member of the TNFR superfamily.
J. Biol. Chem. 1998, 273, 34120–34127.
(14) (a) Franzoso, G.; Carlson, L.; Xing, L.; Poljak, L.; Shores,
E. W.; Brown, K. D.; Leonardi, A.; Tran, T.; Boyce, B. F.;
Siebenlist, U. Requirement for NF-κB in osteoclast and B-cell
development. Genes Dev. 1997, 11, 3482–3496. (b) Lee, Z. H.; Kim,
H. H. Signal transduction by receptor activator of nuclear factor kappa B
in osteoclasts. Biochem. Biophys. Res. Commun. 2003, 305, 211–214.
(15) Ishibashi, O.; Niwa, S.; Kadoyama, K.; Inui, T. MMP-9 antisense
oligodeoxynucleotide exerts an inhibitory effect on osteoclastic
bone resorption by suppressing cell migration. Life Sci. 2006, 79,
1657–1660.
References
(1) Boyle, W. J.; Simonet, W. S.; Lacey, D. L. Osteoclast differentia-
tion and activation. Nature 2003, 423, 337–342.
(2) Teitelbaum, S. L. Bone resorption by osteoclasts. Science 2000,
289, 1504–1508.
(3) (a) Suda, T.; Takahashi, N.; Udagawa, N.; Jimi, E.; Gillespie,
M. T.; Martin, T. J. Modulation of osteoclast differentiation and
function by the new members of the tumor necrosis factor receptor
and ligand families. Endocr. Rev. 1999, 20, 345–357. (b) Pixley, F. J.;
Stanley, E. R. CSF-1 regulation of the wandering macrophage: com-
plexity in action. Trends Cell Biol. 2004, 14, 628–638.
(4) Fuller, K.; Wong, B.; Fox, S.; Choi, Y.; Chambers, T. J. TRANCE is
necessary and sufficient for osteoblast-mediated activation of bone
resorption in osteoclasts. J. Exp. Med. 1998, 188, 997–1001.
(5) Tanaka, S. Signaling axis in osteoclast biology and therapeutic
targeting in the RANKL/RANK/OPG system. Am. J. Nephrol.
2007, 27, 466–478.
(6) Watts, N. Bisphosphonate treatment of osteoporosis. Clin. Geriatr.
Med. 2003, 19, 395–414.
(7) Allen, J.; Fotsch, C.; Babij, P. Emerging Targets in Osteoporosis
Disease Modification. J. Med. Chem. 2010, 177–184.
(8) (a) Lee, J. H.; Kim, H.-N.; Yang, D.; Jung, K.; Kim, H.-M.; Kim,
H.-H.; Ha, H. Trolox prevents osteoclastogenesis by suppressing
(16) Miyazaki, T.; Tanaka, S.; Sanjay, A.; Baron, R. The role of c-Src
kinase in the regulation of osteoclast function. Mod. Rheumatol.
2006, 16, 68–74.
€ €
(17) Halleen, J. M.; Raisanen, S.; Salo, J. J.; Reddy, S. V.; Roodman,
G. D.; Hentunen, T. A.; Lehenkari, P. P.; Kaija, H.; Vihko, P.;
€€ €
Vaananen, H. K. Intracellular fragmentation of bone resorption
products by reactive oxygen species generated by osteoclastic
tartrate-resistant acid phosphatase. J. Biol. Chem. 1999, 274,
22907–22910.