3110
R. Rodríguez-Palacios et al. / Polyhedron 29 (2010) 3103–3110
[Re2(CO)6{Ph2P(S)NP(S)Ph2}]+; 691, [{Re(CO)2[Ph2P(S)NP(S)Ph2]} +
1]+; 635, [{Re[Ph2P(S)NP(S)Ph2]} + 1]+.
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk.
4.1.9. Synthesis of Re(CO)4[Ph2P(S)NP(S)Ph2-j2S,S0], (tetracarbonyl)-
(tetraphenyl-imidodithiophosphinatoꢀj2S,S0)rhenium, 6
0.25 g (0.62 mmol) of the rhenium precursor ReBr(CO)5 were
dissolved in 200 mL of dry degassed toluene in a previously nitro-
gen purged device. K[N(SPPh2)2] (0.3 g; 0.62 mmol) was added and
the solution was heated to 80 °C and maintained for 0.5 h after
which the solution was filtered through diatomaceous earth to re-
move KBr. Toluene was eliminated under reduced pressure
remaining an off-white solid from which the product was ex-
tracted with dichloromethane (0.45 g, 98% yield). Adequate
crystals for X-ray analysis were grown from dichloromethane at
4 °C for several days; mp 150 °C (dec) (from CH2Cl2). (Anal. Calc.
for C28H20NO4P2Re2S2: C, 45.04; H, 2.7. Found: C, 44.76; H,
Acknowledgements
The authors thank M.I. Chávez-Uribe, E. García-Ríos, L. Velasco-
Ibarra, and F. J. Pérez-Flores for technical assistance (Instituto de
Química, UNAM). M.O. S-G, M. R.-L. and A.A. L.-S. gratefully
acknowledge student grants from CONACyT. N. Z.-V. expresses
gratitude to CONACyT for partial funding of this project through
Grant P47263-Q and PAPIIT (DGAPA) through Grant IN217706-2.
References
max(KBr) cmꢀ1 2100 s, 2006 vs, 1983 sh, 1935 vs (CO);
max(CH2Cl2) cmꢀ1 2105 vs, 2010 vs, 1987 vs, 1940
[1] E. Fluck, F.L. Goldmann, Chem. Ber. 96 (1963) 3091.
[2] A. Schmidpeter, H. Groeger, Z. Anorg. Allg. Chem. 345 (1966) 106.
[3] F.T. Wang, J. Najdzioek, K.L. Leneker, H. Wasserman, D. Braitsch, Synth. React.
Inorg. Met. Org. Chem. 8 (1978) 119.
[4] (a) C. Silvestru, J.E. Drake, Coord. Chem. Rev. 223 (2001) 117. and refs. therein;
(b) T.Q. Ly, J.D. Woollins, Coord. Chem. Rev. 176 (1998) 451.
[5] S.W. Magennis, S. Parsons, A. Corval, J.D. Woollins, Z. Pikramenou, Chem.
Commun. (1999) 61.
2.91%).
1215 s (P2N).
vs (CO). 1H NMR (CDCl3, 300 MHz): d/ppm: 7.9 [ddd, Ho(PNP),
m
m
3
4
3JHo–P = 14 Hz, JHo–m = 8 Hz, JHo–P = 1 Hz], 7.4 [m, Hm and Hp].
13C NMR{1H} (CDCl3, 75.6 MHz): d/ppm: 184.3 [s, Re–CO], 183.3
[s, Re–CO], 137.0 [d, Ci, JCi–P = 106 Hz], 131.3 [s, Cp], 130.8 [d, Cm,
3JCm–P = 12 Hz], 128.3 [d, Co, 2JCo–P = 14 Hz]. 31P NMR{1H} (CDCl3,
121.7 MHz): d/ppm: 37.0 [s(broad), Ph2P@S]. MS (m/e): 747,
[M+1], [Re(CO)4{Ph2P(S)NP(S)Ph2}]+; 718, [Re(CO)3{Ph2P(S)NP-
(S)Ph2}]+; 691, [{Re(CO)2[Ph2P(S)NP(S)Ph2]}+1]+; 662, [Re(CO)-
[Ph2P(S)NP(S)Ph2}]+; 635, [{Re[Ph2P(S)NP(S)Ph2]} + 1]+.
[6] H. Ishikawa, T. Kido, T. Umeda, H. Ohyama, Biosci. Biotech. Biochem. 56 (1992)
1882.
[7] A.P. Bassett, R. van Deun, P. Nockemann, P.B. Glover, B.M. Kariuki, K. van Hecke,
L. van Meervelt, Z. Pikramenou, Inorg. Chem. 44 (2005) 6140.
[8] (a) L. Márquez-Pallares, J. Pluma-Pluma, M. Reyes-Lezama, M. Güizado-
Rodríguez, H. Höpfl, N. Zúñiga-Villarreal, J. Organomet. Chem. 692 (2007)
1698;
(b) J.M. Germán-Acacio, M. Reyes-Lezama, N. Zúñiga-Villarreal, J. Organomet.
Chem. 691 (2006) 3223;
(c) N. Zúñiga-Villarreal, J.M. Germán-Acacio, A.A. Lemus-Santana, M. Reyes-
Lezama, R. A Toscano, J. Organomet. Chem. 689 (2004) 2827;
(d) N. Zúñiga-Villarreal, M. Reyes-Lezama, G. Espinosa-Pérez, J. Organomet.
Chem. 645 (2002) 54;
4.1.10. Preparation of (hexacarbonyl) (
l
-tetraphenylimidodiseleno-
phosphinatoꢀj2Se,Se0) (
l
-tetraphenylimidodithiophosphinato-j2
-
S,S0)dirhenium 7
0.15 g (0.14 mmol) of Re2(CO)6(l-Br)[l
-Ph2P(S)NP(S)Ph2-j2S,S0]
(e) N. Zúñiga-Villarreal, M. Reyes-Lezama, S. Hernández-Ortega, C. Silvestru,
Polyhedron 17 (1998) 2679;
4 and 0.16 g (0.27 mmol) of K[Ph2P(Se)NP(Se)Ph2] were dissolved
in 100 mL of dry degassed toluene in an nitrogen purged 200 mL
two-neck flask. The solution was refluxed for 24 h after which an
off-white precipitate was formed. After cooling to ambient temper-
ature the solid was filtered off and washed with hot toluene
(3 ꢁ 10 mL) affording the product. Complex 7 was obtained in
75.0% yield (0.16 g, 0.11 mmol), mp 280–285 °C (from toluene).
(f) N. Zúñiga-Villarreal, C. Silvestru, M. Reyes-Lezama, S. Hernández-Ortega, C.
Alvarez-Toledano, J. Organomet. Chem. 496 (1995) 169.
[9] A.A. Lemus-Santana, M. Reyes-Lezama, N. Zúñiga-Villarreal, R.A. Toscano, G.
Espinosa-Pérez, Organometallics 25 (2006) 1857.
[10] I. Ghesner, C. Palotas, A. Silvestru, C. Silvestru, J.E. Drake, Polyhedron 20 (2001)
1101.
[11] (a) Metallacryptates are three-dimensional metallacrowns. Metallacrowns
were first described by Pecoraro: V.L. Pecoraro, Inorg. Chim. Acta 155 (1989)
171;
m
m
max(KBr) cmꢀ1 2015 s, 1931 vs, 1899 vs (CO); 1210 s, (P2N).
max(CH2Cl2) cmꢀ1 2013 s, 1932 vs, 1897 vs (CO). 31P NMR{1H}
(b) M.S. Lah, V.L. Pecoraro, J. Am. Chem. Soc. 111 (1989) 7258. For an extensive
review see:;
(CDCl3, 121.7 MHz): d/ppm: 37.99 [s, Ph2P@S], 28.53 [s, Ph2P@Se].
[c] V.L. Pecoraro, A.J. Stemmler, B.R. Gibney, J.J. Bodwin, H. Wang, J.W. Kampf,
A. Barwinski, in: K.D. Karlin (Ed.), Progress in Inorganic Chemistry, vol. 45,
John Wiley & Sons, New York, 1997, p. 83. Cryptates are inclusion complexes in
which the substrate is contained inside their molecular cavity:;
[d] J.-M. Lehn, Acc. Chem. Res. 11 (1978) 49;
4.2. Crystal data
See Table 1.
[e] J.-M. Lehn, J.-B. Regnouf de Vains, Helv. Chim. Acta 75 (1992) 1221.
[12] F.P. Pruchnik, Organometallic Chemistry of the Transition Elements, Plenum,
New York, 1990. p. 32.
4.3. Crystal structure determinations
[13] H. Nöth, Z. Naturforsch. 37b (1982) 1491.
[14] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure
and Reactivity, HarperCollins, New York, 1993. pp. 114 and 292.
[15] For metallophylic interactions in multiheteronuclear matallocryptates see: J.V.
Catalano, M.A. Malwitz, J. Am. Chem. Soc. 126 (2004) 6560. and refs. therein.
[16] H. Fenton, I.S. Tidmarsh, M.D. Ward, Dalton Trans. 39 (2010) 3805. and refs.
therein.
Data for complexes were collected on a Bruker Smart Apex CCD
diffractometer and used in the full matrix least squares refinement.
The structures were solved by direct methods from final difference
Fourier syntheses. All non-hydrogen atoms were refined anisotrop-
ically. Suitable crystals of 1 and 3 were obtained from concentrated
solutions of chloroform and 2 from hexane all of them after several
days at ꢀ4 °C, while crystals for 4 and 6 were obtained by slow va-
por phase diffusion of their methylene chloride solutions and hex-
ane at 5 °C.
[17] V.J. Catalano, B.L. Bennet, M.A. Malwitz, R.L. Yson, H.M. Kar, S. Muratidis, S.
Horner, Comments Inorg. Chem. 24 (2003) 39.
[18] M.R. Churchill, K.N. Amoth, H.J. Wasserman, Inorg. Chem. 20 (1981) 1609.
[19] E.W. Abel, S.K. Bhargava, M.M. Bhatti, M.A. Mazid, K.G. Orrell, V. Sik, M.B.
Hursthouse, K.M. Abdul Malik, J. Organomet. Chem. 250 (1983) 373.
[20] J.E. Drake, M.B. Hursthouse, M. Kulcsar, M.E. Light, A. Silvestru, J. Organomet.
Chem. 623 (2001) 153.
[21] H. Egold, S. Klose, U. Flörke, Z. Anorg. Allg. Chem. 627 (2001) 164.
[22] D. Vitali, F. Calderazzo, Gazz. Chim. It. 102 (1972) 587.
5. Supplementary data
CCDC 780509, 780510, 780511, 780512 and 780513 contain the
supplementary crystallographic data for 1, 2, 6, 3, and 4. These data