LETTER
Hydroacylation Reaction of Azodicarboxylates with Aldehydes in Water
2455
Guzei, I. A.; Lee, D. Org. Lett. 2005, 7, 495. (d) Nair, V.;
Biju, A. T.; Abhilash, K. G.; Menon, R. S.; Suresh, E. Org.
Lett. 2005, 7, 2121. (e) Nair, V.; Biju, A. T.; Vinod, A. U.;
Suresh, E. Org. Lett. 2005, 7, 5139.
gave hydroacylation products 3l–m in moderate yield
(Table 2, entries 11 and 12). To broaden the scope of the
reaction, a wide range of azodicarboxylates 2b,c, were
used in the reaction with cyclohexanecarboxaldehyde also
gave the desired products 3n,o in high yields (87–90%,
Table 2, entries 13 and 14).
(6) For selected a-amination of carbonyl compounds, see:
(a) Zhu, R.; Zhang, D.; Wu, J.; Liu, C. Tetrahedron:
Asymmetry 2007, 18, 1655. (b) Mashiko, T.; Hara, K.;
Tanaka, D.; Fujiwara, Y.; Kumagai, N.; Shibasaki, M. J. Am.
Chem. Soc. 2007, 129, 11342. (c) Thomassigny, C.; Prim,
D.; Greck, C. Tetrahedron Lett. 2006, 47, 1117. (d) Liu, X.;
Li, H.; Deng, L. Org. Lett. 2005, 7, 167. (e) For reviews,
see: Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem.
Int. Ed. 2003, 42, 1367. (f) Erdik, E. Tetrahedron 2004, 60,
8747. (g) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J.
Org. Chem. 2004, 1377.
(7) (a) Diels, O.; Fisher, E. Ber. Dtsch. Chem. Ges. 1914, 47,
2043. (b) Huisgen, R.; Rapp, W.; Ugi, I.; Walz, H.; Glogger,
I. Justus Liebigs Ann. Chem. 1954, 586, 52. (c) Askani, R.
Chem. Ber. 1965, 98, 2551. (d) Jeffs, P. W.; Campbell,
H. F.; Hawks, R. L. J. Chem. Soc., Chem. Commun. 1971,
1338. (e) Smissman, E. E.; Makriyannis, A. J. Org. Chem.
1973, 38, 1652. (f) Doleschall, G. Tetrahedron Lett. 1978,
19, 2131. (g) Abarca, B.; Ballesteros, R.; Gonzalez, E.;
Sancho, P.; Sepulveda, J.; Soriano, C. Heterocycles 1990,
31, 1811. (h) Reliquet, A.; Besbes, R.; Reliquet, F.; Meslin,
J. C. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 70, 211.
(i) Denis, A.; Renou, C. Tetrahedron Lett. 2002, 43, 4171.
(8) (a) Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1969,
8, 556. (b) Stephenson, L. M.; Mattern, D. J. Org. Chem.
1976, 41, 3614. (c) Grigg, R.; Kemp, J. J. Chem. Soc.,
Chem. Commun. 1977, 125. (d) Dang, H. S.; Davies, A. G.
J. Chem. Soc., Perkin Trans. 2 1991, 721. (e) Leblanc, Y.;
Zamboni, R.; Bernstein, M. A. J. Org. Chem. 1991, 56,
1971. (f) Brimble, M. A.; Heathcock, C. H. J. Org. Chem.
1993, 58, 5261. (g) Kinart, W. J. J. Chem. Res., Synop. 1994,
486. (h) Sarkar, T. K.; Ghorai, B. K.; Das, S.;
The mechanism for the hydroacylation reaction is still not
clear, but we assume that when this reaction is carried out
in water, it proceeds via a radical mechanism, which was
described in previous studies.9,10a,14 The hydrogen of wa-
ter plays an important role in stabilizing the radical transi-
tion state through hydrogen bonding and facilitating the
addition of the acyl radical intermediate to azodicarboxy-
late to form the hydroacylation product.
In summary, we have developed an efficient hydroacyla-
tion reaction involving aldehydes and azodicarboxylates
to give the hydrazine imide products in water. For these
reactions, moderate to excellent yields are obtained under
convenient conditions without the use of metal catalysts.
The synthetic procedure presented is simple, practical,
and environmentally benign. Further study on the reaction
mechanism and the exploration of the scope of the reac-
tion substrates are under way in our laboratory.
Acknowledgment
We are grateful to the Robert A. Welch Foundation (T-1460) for fi-
nancial support of this research.
References and notes
Grangopadhyay, P.; Rao, S. Tetrahedron Lett. 1996, 37,
6607. (i) Aly, A. A.; Ehrhardt, S.; Hopf, H.; Dix, I.; Jones,
P. G. Eur. J. Org. Chem. 2006, 335. (j) Biswas, A.; Sharma,
B. K.; Willett, J. L.; Erhan, S. Z.; Cheng, H. N. Green Chem.
2008, 10, 298.
(1) These authors contributed equally to this work.
(2) (a) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas,
P. T. Science 2002, 297, 807. (b) Desimone, J. M. Science
2002, 297, 799.
(3) (a) Li, C. J.; Chan, T. H. Organic Reactions in Aqueous
Media; Wiley: New York, 1997. (b) Ten Brink, G.-J.;
Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 636.
(c) Lindstroem, U. M. Chem. Rev. 2002, 102, 2751.
(d) Breslow, R. Acc. Chem. Res. 1991, 24, 159.
(9) (a) Schenck, G. O.; Formaneck, H. Angew. Chem. 1958, 70,
505. (b) Alder, K.; Noble, T. Ber. Dtsch. Chem. Ges. 1943,
54. (c) Huisgen, R.; Jakob, F. Justus Liebigs Ann. Chem.
1954, 590, 37. (d) González-Rosende, M. E.; Lozano-Lucia,
O.; Zaballos-Garcia, E.; Sepúlveda-Arques, J. J. Chem. Res.,
Synop. 1995, 260. (e) Zaballos-García, E.; González-
Rosende, M. E.; Jorda-Gregori, J. M.; Sepúlveda-Arques, J.;
Jennings, W. B.; O’Leary, D.; Twomey, S. Tetrahedron
1997, 53, 9313.
(e) Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35,
533. (f) Engberts, J. B. F. N.; Blandamer, M. J. Chem.
Commun. 2001, 1701. (g) Kobayashi, S.; Manabe, K. Pure
Appl. Chem. 2000, 72, 1373.
(4) For selected reviews, see: (a) Hegedus, L. S. Angew. Chem.,
Int. Ed. Engl. 1988, 27, 1113. (b) Nair, V.; Menon, R. S.;
Sreekanth, A. R.; Abhilash, N.; Biju, A. T. Acc. Chem. Res.
2006, 39, 520. (c) Vollhardt, K. P. C.; Eichberg, M. J.
Strategies and Tactics in Organic Synthesis 2004, 4, 365.
(d) Beller, M.; Riermeier, T. H. Transition Met. Org. Synth.
1998, 1, 184. (e) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H.
Angew. Chem. Int. Ed. 2004, 43, 3368. (f) Hartwig, J. F.
Science 2002, 297, 1653. (g) Knochel, P.; Sapountzis, I.;
Gommermann, N. Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed., Vol 2; de Mejiere, A.; Diederich, F.,
Eds.; Wiley-VCH: Weinheim, 2004, 671. (h) Matsubara,
R.; Kobayashi, S. Acc. Chem. Res. 2008, 41, 292.
(5) (a) Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. Engl.
1969, 8, 513. (b) Nair, V.; Biju, A. T.; Mohanan, K.; Suresh,
E. Org. Lett. 2006, 8, 2213. (c) Otte, R. D.; Sakata, T.;
(10) (a) Lee, D.; Otte, R. D. J. Org. Chem. 2004, 69, 3569.
(b) Kim, Y. J.; Lee, D. Org. Lett. 2004, 6, 4351.
(11) Ni, B.; Zhang, Q.; Garre, S.; Headley, A. D. Adv. Synth.
Catal. 2009, 351, 875.
(12) The reaction of hexanal and diisopropyl azodicarboxylate
without catalyst under neat conditions was described by Lee
et al.10a and afforded the addition product with 14 days at r.t.
(13) Due to the many byproducts observed in the reaction
mixture, the bisazodicarboxylates could not be isolated.10a
(14) Chudasama, V.; Fitzmaurice, R. J.; Caddick, S. Nature
Chem. 2010, 2, 592.
(15) Typical Procedure for the Hydroacylation Reaction in
H2O
To a stirred solution of aldehyde 1 (1.0 mmol) in H2O (0.5
mL) was added azodicarboxylate 2 (0.5 mmol). The reaction
was stirred at r.t. for the time as indicated in Tables 1 and 2.
The reaction mixture was extracted with Et2O for two times
Synlett 2010, No. 16, 2453–2456 © Thieme Stuttgart · New York