Ketone 5, the Ugi precursor, was accessed in enantioen-
riched form by a four-step procedure as reported previously
by us.3 With norbornenone 5 in hand, the stage was set for
investigating the Ugi-4-component reaction. In preliminary
experiments racemic 5 was reacted with 4-phenyl-1-isocy-
anocyclohexene, chloroacetic acid, and dimethoxybenzy-
lamine (DMBNH2) to give the corresponding Ugi-adduct 6
(Scheme 1).
Scheme 1. Attempted Amide Manipulations
Figure 1. Oroidin alkaloids massadine (1), axinellamine A (2) and
B (3), and palau’amine (4).
ploying “convertible isonitriles”. In the typical Ugi-4-
component sequence the amide bonds formed during the
reaction are difficult to further elaborate, as harsh conditions
are required for the subsequent synthetic manipulations.
These conditions, however, would be incompatible with a
complex structure containing sensitive functionalities. Thus,
we became interested in examining the use of “convertible
isonitriles” that would lead to amides amenable to subsequent
facile and mild manipulation.
Diamides similar to 6 have been reported to be susceptible
to nucleophilic attack in acidic media through the interme-
diacy of a mu¨nchnone.4 However, when 6 was subjected to
HCl in ether, we merely recorded the loss of the cyclohexenyl
group leading to primary amide 8 as the sole product
(Scheme 1).
(2) (a) Starr, J. T.; Koch, G.; Carreira, E. M. J. Am. Chem. Soc. 2000,
122, 8793. (b) Koenig, S. G.; Miller, S. M.; Leonard, K. A.; Lowe, R. S.;
Chen, B. C.; Austin, D. J. Org. Lett. 2003, 5, 2203. (c) Dilley, A. S.; Romo,
D. Org. Lett. 2001, 3, 1535. (d) Poullennec, K. G.; Romo, D. J. Am. Chem.
Soc. 2003, 125, 6344. (e) Dransfield, P. J.; Wang, S.; Dilley, A.; Romo, D.
Org. Lett. 2005, 7, 1679. (f) Dransfield, P. J.; Dilley, A. S.; Wang, S.; Romo,
D. Tetrahedron 2006, 62, 5223. (g) Wang, S.; Dilley, A. S.; Poullenec,
K. G.; Romo, D. Tetrahedron 2006, 62, 7155. (h) Garrido-Hernandez, H.;
Nakadai, M.; Vimolratana, M.; Li, Q.; Doundoulakis, T.; Harran, P. G.
Angew. Chem., Int. Ed. 2005, 44, 765. (i) Tan, X.; Chen, C. Angew. Chem.,
Int. Ed. 2006, 45, 4345. (j) Du, H.; He, Y.; Sivappa, R.; Lovely, C. J. Synlett
2006, 965. (k) Sivappa, R.; Hernandez, N. M.; He, Y.; Lovely, C. J. Org.
Lett. 2007, 9, 3861. (l) Lovely, C. J.; Du, H.; Dias, H. V. R. Org. Lett.
2001, 3, 1319. (m) Lovely, C. J.; Du, H.; Dias, H. V. R. Heterocycles 2003,
60, 1. (n) Du, H.; Sivappa, R.; Bhandari, M. K.; He, Y.; Dias, H. V. R.;
Lovely, C. J. J. Org. Chem. 2007, 72, 3741. (o) Overman, L. E.; Rogers,
B. N.; Tellew, J. E.; Trenkle, W. C. J. Am. Chem. Soc. 1997, 119, 7159.
(p) Belanger, G.; Hong, F. T.; Overman, L. E.; Rogers, B. N.; Tellew, J. E.;
Trenkle, W. C. J. Org. Chem. 2002, 67, 7880. (q) Katz, J. D.; Overman,
L. E. Tetrahedron 2004, 60, 9559. (r) B. A. Lanman, B. A.; L. E. Overman,
L. E. Heterocycles 2006, 70, 557. (s) Baran, P. S.; Zografos, A. L.;
O’Malley, D. P. J. Am. Chem. Soc. 2004, 126, 3726. (t) Northrop, B. H.;
O’Malley, D. P.; Zografos, A. L.; Baran, P. S.; Houk, K. N. Angew. Chem.,
Int. Ed. 2006, 45, 4126. (u) Yamaguchi, J.; Seiple, I. B.; Young, I. S.;
O’Malley, D. P.; Maue, M.; Baran, P. S. Angew. Chem., Int. Ed. 2008, 47,
3578. (v) O’Malley, D. P.; Yamaguchi, J.; Young, I. S.; Seiple, I. B.; Baran,
P. S. Angew. Chem., Int. Ed. 2008, 47, 3581. (w) O’Malley, D. P.; Li, K.;
Maue, M.; Zografos, A. L.; Baran, P. S. J. Am. Chem. Soc. 2007, 129,
4762. (x) Su, S.; Seiple, I. B.; Young, I. S.; Baran, P. S. J. Am. Chem. Soc.
2008, 130, 16490. (y) Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.;
Yamaguchi, J.; Baran, P. S. Angew. Chem., Int. Ed. 2010, 49, 1095. (z)
Bultman, M. S.; Ma, J.; Gin, D. Y. Angew. Chem., Int. Ed. 2008, 47, 6821.
(3) Breder, A.; Chinigo, G. M.; Waltman, A. W.; Carreira, E. M. Angew.
Chem., Int. Ed. 2008, 47, 8514.
The use of 2-(tert-butyldimethylsilyloxymethyl)phenyl-
isonitrile under otherwise identical conditions for the Ugi-
reaction gave 7 in 63% yield. The aniline moiety within 7
was shown to undergo intramolecular transesterification in
related systems under acidic conditions.5 Thus, 7 was
exposed to acidic methanol at 35 °C, which resulted in an
overall displacement of the TBS ether with chloride at the
benzylic position (9, Scheme 1). After screening several other
isonitriles, we found 2-nitrophenylisonitrile to efficiently
participate in the Ugi-reaction (79%, Scheme 2). More
importantly, subsequent conversion of amide 11 to alcohol
13 proceeded without any difficulty.6 The reduction of the
amide was realized in two steps starting with SnCl2 mediated
reduction of the nitro group within the Boc-carbamate
derived from 11 (70%). In the second operation the arylamino
function was allowed to react with isoamyl nitrite to give
the corresponding benzotriazole intermediate A, which upon
(4) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118,
2574.
(5) Linderman, R. J.; Binet, S.; Petrich, S. R. J. Org. Chem. 1999, 64,
336.
(6) Gilley, C. B.; Kobayashi, Y. J. Org. Chem. 2008, 73, 4198.
Org. Lett., Vol. 13, No. 1, 2011
79