204 Organometallics 2011, 30, 204–207
DOI: 10.1021/om101109c
Reversibility of Disubstituted Vinylidene-Internal Alkyne Isomerization
at Cationic Ruthenium and Iron Complexes
Yuichiro Mutoh,* Kohei Imai, Yusuke Kimura, Yousuke Ikeda, and Youichi Ishii*
Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga,
Bunkyo-ku, Tokyo 112-8551, Japan
Received November 26, 2010
Summary: The cationic disubstituted vinylideneruthenium
complexes [CpRu{dCdC(Ph)R}(dppe)][BArF4], which are
prepared directly from internal alkynes via 1,2-migration of
carbon substituents, are shown to undergo disubstituted vinyl-
idene-to-internal alkyne isomerization on reaction with a
monophosphine. The observation provides the first examples
in which the reversible conversion between internal alkynes and
disubstituted vinylidenes is experimentally confirmed, and the
kinetic and mechnistic investigations indicated that an uncom-
mon electrophilic 1,2-migration of the carbon substituents
takes place in the internal alkyne-disubstituted vinylidene
interconversion.
iodo-substituted6 alkynes have appeared in the literature.
Very recently, we have demonstrated that several iron and
ruthenium complexes can affect the vinylidene rearrange-
ment of a wide variety of internal alkynes to give disubsti-
tuted vinylidene complexes such as [CpRu{dCdC(Ph)Ar}-
(dppe)][BArF4] (1; Cp = η5-C5H5, dppe = Ph2PCH2CH2-
PPh2, ArF=3,5-(CF3)2C6H3).7 We have also disclosed that
this transformation involves an uncommon electrophilic 1,2-
migration of carbon substituents at the intermediary η2-alkyne
complexes. Meanwhile, the reverse process, i.e., the conversion
of vinylidenes to alkynes, is well documented for the mono-
substituted vinylidene complexes, especially the [(η5-C9H7)Ru-
(PPh3)2] system.8 However, similar conversions of η1-vinylidenes
with two carbon substituents into the η2 internal alkynes
have scarcely been explored. The only example reported so
far is the irreversible conversion of the η1-vinylidene in
[CpFe(CO)2{dCdC(Ph)Me}](OTf) (Tf=SO2CF3) into the
corresponding η2-alkyne complex,9 although the reversible
migration of a silyl group was observed in the (β,β-bis(silyl)-
vinylidene)chromium complex [Cr(η6-C6Me6)(CO)2{dCdC-
(SiMe3)2}]3b and (β-silyl-β-arylvinylidene)rhodium complex
trans-[RhCl{dCdC(ferrocenyl)SiMe3}(P-i-Pr3)2].3c Now, we
have experimentally demonstrated for the first time that the
transformation between alkynes and vinylidenes via carbon
substituent migration is potentially reversible (Scheme 1).
It is well recognized that terminal alkynes are readily and
reversibly interconvertible with monosubstituted vinylidenes
at transition-metal complexes, and this rearrangement has in
fact been utilized in many metal-promoted or -catalyzed
transformations of alkynes as the key step.1 In contrast,
prior to our study, migration of carbon substituents in internal
alkynes leading to the disubstituted vinylidenes was limited
to very few rearrangements of acylalkynes,2 although
similar rearrangements of silyl-,3 stannyl-,4 sulfenyl-,5 and
*To whom correspondence should be addressed. E-mail:
ymutoh@kc.chuo-u.ac.jp (Y.M.); yo-ishii@kc.chuo-u.ac.jp (Y.I.).
(1) (a) Metal Vinylidenes and Allenylidenes in Catalysis: From
Reactivity to Applications in Synthesis; Bruneau, C., Dixneuf, P. H., Eds.;
Wiley-VCH: Weinheim, Germany, 2008. (b) Bruce, M. I. Chem. Rev. 1991,
91, 197–257. (c) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311–
323. (d) Valerga, P.; Puerta, M. C. Coord. Chem. Rev. 1999, 193-195, 977–
1025. (e) Wakatsuki, Y. J. Organomet. Chem. 2004, 689, 4092–4109. (f)
Katayama, H.; Ozawa, F. Coord. Chem. Rev. 2004, 248, 1703–1715. (g)
Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176–2203.
(6) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518–519.
(7) (a) Ikeda, Y.; Yamaguchi, T.; Kanao, K.; Kimura, K.; Kamimura,
S.; Mutoh, Y.; Tanabe, Y.; Ishii, Y. J. Am. Chem. Soc. 2008, 130, 16856–
16857. (b) Mutoh, Y.; Ikeda, Y.; Kimura, Y.; Ishii, Y. Chem. Lett. 2009, 38, 534–
535.
(h) Varela, J. A.; Saa, C. Chem. Eur. J. 2006, 12, 6450–6456. (i) Trost, B. M.;
(8) For representative examples, see the following. [(η5-C9H7)Ru]: (a)
ꢀ
ꢀ
~
McClory, A. Chem. Asian J. 2008, 3, 164–194. (j) Lynam, J. M. Chem. Eur.
J. 2010, 16, 8238–8247.
Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Perez-Carreno, E.; Garcıa-
Granda, S. Organometallics 1999, 18, 2821–2832. (b) Cadierno, V.;
ꢀ
~
(2) (a) King, P. J.; Knox, S. A. R.; Legge, M. S.; Orpen, A. G.;
Wilkinson, J. N.; Hill, E. A. Dalton Trans. 2000, 1547–1548. (b) Shaw,
M. J.; Bryant, S. W.; Rath, N. Eur. J. Inorg. Chem. 2007, 3943–3946. (c)
Bustelo, E.; de los Rios, I.; Puerta, M. C.; Valerga, P. Organometallics 2010,
29, 1740–1749.
Conejero, S.; Gamasa, M. P.; Gimeno, J.; Perez-Carreno, E.; García-Granda,
S. Organometallics 2001, 20, 3175–3189. (c) Cadierno, V.; Gamasa, M. P.;
ꢀ
ꢀ
~
Gimeno, J.; Gonzalez-Bernardo, C.; Perez-Carreno, E.; García-Granda, S.
Organometallics 2001, 20, 5177–5188. (d) Cadierno, V.; Conejero, S.;
Gamasa, M. P.; Gimeno, J.; Falvello, L. R.; Llusar, R. M. Organometallics
2002, 21, 3716–3726. (e) Cadierno, V.; Conejero, S.; Gamasa, M. P.; Gimeno,
J. Dalton Trans. 2003, 3060–3066. (f) Nishibayashi, Y.; Imajima, H.;
Onodera, G.; Uemura, S. Organometallics 2005, 24, 4106–4109. (g) Gamasa,
M. P.; Bassetti, M.; Cadierno, V.; Gimeno, J.; Pasquini, C. Organometallics
2008, 27, 5009–5016. [CpRu]: (h) Bullock, R. M. J. Chem. Soc., Chem.
Commun. 1989, 165–167. [(η5-C5Me5)Ru]: (i) Bruce, M. I.; Hall, B. C.;
Tiekink, E. R. T. Aust. J. Chem. 1997, 50, 1097–1099. [{tris(pyrazoly-
borato)}Ru]: (j) Slugovc, C.; Sapunov, V. N.; Wiede, P.; Mereiter, K.; Schmid,
R.; Kirchner, K. J. Chem. Soc., Dalton Trans. 1997, 4209–4216. [CpW] and
[CpMo]: (k) Ipaktschi, J.; Mohsseni-Ala, J.; Uhlig, S. Eur. J. Inorg. Chem.
€
(3) (a) Werner, H.; Baum, M.; Schneider, D.; Windmuller, B. Orga-
nometallics 1994, 13, 1089–1097. (b) Connelly, N. G.; Geiger, W. E.;
Lagunas, M. C.; Metz, B.; Rieger, A. L.; Rieger, P. H.; Shaw, M. J. J. Am.
Chem. Soc. 1995, 117, 12202–12208. (c) Katayama, H.; Onitsuka, K.;
Ozawa, F. Organometallics 1996, 15, 4642–4645. (d) Katayama, H.; Ozawa,
F. Organometllics 1998, 17, 5190–5196. (e) Sakurai, H.; Fujii, T.; Sakamoto,
K. Chem. Lett. 1992, 339–342. (f) Naka, A.; Okazaki, S.; Hayashi, M.;
Ishikawa, M. J. Organomet. Chem. 1995, 499, 35–41. (g) Werner, H.; Lass,
R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16, 4077–4088. (h)
ꢀ
Jimenez, M. V.; Sola, E.; Lahoz, F. J.; Oro, L. A. Organometallics 2005, 24,
ꢀ
€
2722–2729. (i) Ilg, K.; Paneque, M.; Poveda, M. L.; Rendon, N.; Santos,
2003, 4313–4320. Other systems: (l) Rappert, T.; Nurnberg, O.; Mahr, N.; Wolf,
J.; Werner, H. Organometallics 1992, 11, 4156–4164. (m) Albertin, G.;
Antoniutti, S.; Bordignon, E.; Cazzaro, F.; Ianelli, S.; Pelizzi, G. Organome-
tallics 1995, 14, 4114–4125. (n) Martin, M.; Gevert, O.; Werner, H. J. Chem.
Soc., Dalton Trans. 1996, 2275–2283.
L. L.; Carmona, E.; Mereiter, K. Organometallics 2006, 25, 2230–2236.
(4) (a) Venkatesan, K.; Blacque, O.; Fox, T.; Alfonso, M.; Schmalle,
H. W.; Kheradmandan, S.; Berke, H. Organometallics 2005, 24, 920–
932. (b) Venkatesan, K.; Fox, T.; Schmalle, H. W.; Berke, H. Eur. J. Inorg.
Chem. 2005, 901–909.
(9) Bly, R. S.; Zhong, Z.; Kane, C.; Bly, R. K. Organometallics 1994,
13, 899–905.
(5) Miller, D. C.; Angelici, R. J. Organometallics 1991, 10, 79–89.
r
pubs.acs.org/Organometallics
Published on Web 12/20/2010
2010 American Chemical Society