M.N. Patel et al. / Polyhedron 29 (2010) 3238–3245
3245
[17] V. Ponti, M.V. Dianzaini, K.J. Cheesoman, T.F. Stater, Chem.-Biol. Inter. 23
(1978) 281.
[18] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, fifth ed., Wiley, New
York, 1988.
and U.G.C. for providing financial support under ‘‘UGC Research
Fellowship for Meritorious Students” scheme.
[19] B.N. Figgis, J. Lewis, in: J. Lewis, R.G. Wilkins (Eds.), Modern coordination
chemistry: principles and methods, Interscience, New York, 1960, p. 400.
[20] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, forth ed., Wiley Interscience Publication, New York, 1986.
[21] J.R. Anacona, I. Rodriguez, J. Coord. Chem. 57 (2004) 1263.
[22] G.B. Deacon, R. Philips, J. Coord. Chem. Rev. 33 (1980) 227.
[23] Z.H. Chohan, C.T. Suparan, A. Scozzafava, J. Enzyme Inhib. Med. Chem. 23
(2005) 303.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[24] N.H. Patel, P.K. Panchal, P.B. Pansuriya, M.N. Patel, J. Macromol. Sci. Pure Appl.
Chem. 43 (2006) 1083.
[25] P.B. Pansuriya, P. Dhnadhukia, V. Thakkar, M.N. Patel, J. Enzyme Inhib. Med.
Chem. 22 (2007) 477.
[1] M. Hartmann, A. Robert, V. Duarte, B.K. Keppler, B. Meunier, J. Biol. Inorg.
Chem. 2 (1997) 427.
[26] P.K. Panchal, M.N. Patel, Synth. React. Inorg. Met.-Chem. 34 (2004) 1277.
[27] H.H. Freedman, J. Am. Chem. Soc. 83 (1961) 2900.
[28] T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G.L. Almajan, A. Gulea,
Polyhedron 29 (2010) 757.
[29] G. Psomas, C. Dendrinou-Samara, P. Philippakopoulos, V. Tangoulis, C.P.
Raptopoulou, E. Samaras, D.P. Kessissoglou, Inorg. Chim. Acta 272 (1998) 24.
[30] I. Turel, A. Golobic, A. Klavzar, B. Pihlar, P. Buglyo, E. Tolis, D. Rehder, K. Sepcic,
J. Inorg. Biochem. 95 (2003) 199.
[31] Z.H. Chohan, Appl. Organomet. Chem. 20 (2006) 112.
[32] Z.H. Chohan, M. Arif, Z. Shafiq, M. Yaqub, C.T. Supuran, J. Enzyme Inhib. Med.
Chem. 21 (2006) 95.
[33] S. Satyanarayana, J.C. Daborusak, J.B. Chaires, Biochemistry 32 (1993) 2573.
[34] G. Yang, J.Z. Wu, L. Wang, L.-N. Ji, X. Tian, J. Inorg. Biochem. 66 (1997) 141.
[35] G. Song, Y. He, Z. Cai, J. Fluoresc. 14 (2004) 705.
[36] T.M. Kelly, A.B. Tossi, D.J. McConnell, T.C. Strekas, Nucleic Acids Res. 13 (1985)
6017.
[37] L.A. Lipscomb, F.X. Zhou, S.R. Presnell, R.J. Woo, M.E. Peek, R.R. Plaskon, L.D.
Williams, Biochemistry 35 (1996) 2818.
[38] S. Arounaguiri, B.G. Maiya, Inorg. Chem. 35 (1996) 4267.
[39] A.B.P. Lever, E. Mantovani, Inorg. Chem. 10 (1997) 817.
[40] T. Hirohama, Y. Karunuki, E. Ebina, T. Suzaki, H. Arii, M. Chikira, P.T. Selvi, M.
Palaniandavar, J. Inorg. Biochem. 99 (2005) 1205.
[2] S.R. Rajski, R.M. Williams, Chem. Rev. 98 (1998) 2723.
[3] M.V. Keck, S.J. Lippard, J. Am. Chem. Soc. 114 (1992) 3386.
[4] J.R.J. Sorenson, in: G. Berthon (Ed.), Handbook on metal–ligand interactions in
biological fluids: bioinorganic medicine, vol. 2, Marcel Dekker, New York, 1995,
pp. 1128–1139.
[5] O. Ibopishak Singh, M. Damayanti, N. Rajen Singh, R.K. Hemakumar Singh, M.
Mohapatra, R.M. Kadam, Polyhedron 24 (2005) 909.
[6] E.K. Efthimiadou, M.E. Katsarou, A. Karaliota, G. Psomas, J. Inorg. Biochem. 102
(2008) 910.
[7] I. Fridovich, Annu. Rev. Biochem. 64 (1995) 97.
[8] L.W. Oberley, G.R. Buettner, Cancer Res. 39 (1979) 1141.
[9] A.E.G. Cass, Superoxide Dismutases, in: P. Harrison (Ed.), Metalloproteins, part
I: metal proteins with redox roles, Verlag Chemie, Weinheim, Germany, 1985,
pp. 121–156.
[10] A.I. Vogel, Textbook of Quantitative Inorganic Analysis, fourth ed., ELBS and
Longman, London, 1978.
[11] G.S. Hanan, J. Wang, Synlett (2005) 1251.
[12] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
[13] A. Wolfe, G.H. Shimer, T. Meehan, Biochemistry 26 (1987) 6392.
[14] J.B. Chaires, N. Dattagupta, D.M. Crothers, Biochemistry 21 (1982) 3933.
[15] G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 45.
[16] J. Yang, R.N.S. Wong, M.S. Yang, Chem.-Biol. Inter. 125 (2000) 221.
[41] J.M. Domagala, J. Antimicrob. Chemother. 33 (1994) 685.