1528
Vol. 58, No. 11
Acknowledgement This research was supported in part by a Grant from
the “Okayama Medical Foundation Okayama University Medical School.”
(11d) exhibited excitation and emission spectra, with max-
ima at 385 nm and 495 nm, respectively. The 5-N,N-dimethyl-
amino derivative 12d exhibited weak excitation and emission
spectra, as compared to 11d, with maxima at 401 nm and
516 nm, respectively. The excitation and emission intensities
of 11d are about 6 greater than those of 12d. In the 5 series,
the 5-N,N-dimethylamino derivative 12b exhibited weak ex-
citation and emission as compared to 12d, with maxima at
404 nm and 515 nm, respectively. It is of interest that the 4-
N,N-dimethylamino derivative 12a did not exhibit apparent
excitation or emission (data not shown). The rank order of
the fluorescence intensity decreased in the order of 5-
NH2Ͼ5-N(Me)2ϾϾ4-N(Me)2. This prompted us to speculate
that methylation of the 5-amino group of phthalimide de-
creased both excitation and emission, probably due to loss of
the hydrogen-bonding nature of the amino group and/or
change of the electron donor–acceptor balance of the phthal-
imide ring.11) The shift of the N,N-dimethylamino group
from the 5-position to the 4-position of the phthalimide ring
decreased both excitation and emission, but the exact reason
unknown. Based on the spectral intensity, we selected the
amino-6 series for further study.
References and Notes
1) Alberti K. G., Zimmet P. Z., Diabetic Medicine, 15, 539—553 (1998).
2) Mukherjee R., Jow L., Noonan D., McDonnell D. P., J. Steroid
Biochem. Mol. Biol., 51, 157—166 (1994).
3) Lehmann J. M., Kliewer S. A., Moore L. B., Smith-Oliver T. A., Blan-
chard D. E., Spencer T. A., Willson T. M., J. Biol. Chem., 272, 3137—
3140 (1997).
4) Repa J. J., Turley S. D., Lobaccaro J. M. A., Medina J., Li L., Lustig
K., Shan B., Heyman R. A., Dietschy J. M., Mangelsdorf D. J.,
Science, 289, 1524—1529 (2000).
5) Schults J. R., Tu H., Luk A., Repa J. J., Medina J. C., Li L., Schwend-
ner S., Wang S., Thoolen M., Mangelsdorf D. J., Lustig K. D., Shan B.,
Genes Develop., 14, 2831—2838 (2000).
6) Noguchi-Yachide T., Aoyama A., Makishima M., Miyachi H.,
Hashimoto Y., Bioorg. Med. Chem. Lett., 17, 3957—3961 (2007).
7) Noguchi-Yachide T., Miyachi H., Aoyama A., Makishima M., Aoyama
H., Hashimoto Y., Chem. Pharm. Bull., 55, 1750—1754 (2007).
8) Dodo K., Aoyama A., Noguchi T., Makishima M., Miyachi H.,
Hashimoto Y., Bioorg. Med. Chem., 16, 4272—4285 (2008).
9) Aoyama A., Aoyama H., Dodo K., Makishima M., Hashimoto Y.,
Miyachi H., Heterocycles, 76, 137—141 (2008).
10) Aoyama A., Aoyama H., Makishima M., Hashimoto Y., Miyachi H.,
Heterocycles, 78, 2209—2216 (2009).
11) Soujanya T., Fessenden R. W., Samanta A., J. Phys. Chem., 100,
3507—3512 (1996).
For binding assay application, we have to use aqueous so-
lution, because the active conformation of LXR protein is 12) Soujanya T., Krishna T. S. R., Samanta A., J. Photochem. Photobiol.
A: Chem., 66, 185—192 (1992).
unstable in organic media. Therefore, we investigated the ef-
1
13) 11a; H-NMR (500 MHz, CDCl3) d: 7.49 (d, Jϭ8.4 Hz, 1H), 7.06—
fect of the addition of phosphate-buffered saline (PBS) (pH
7.40 (m, 10H), 6.92 (d, Jϭ8.4 Hz, 1H), 5.30 (s, 2H), 2.84 (m, 4H);
7.4). In the case of 11d, the excitation and emission intensity
decreased dramatically, especially in the case of its fluores-
cence, and exhibited red shift of fluorescence, depending on
the solvent polarity. That is, the excitation and emission max-
ima (nm) shifted from 385/495 (DMSO) to 393/527
(DMSO : PBSϭ1 : 1 v/v). The excitation and emission max-
ima (nm) of 11d in DMSO : PBSϭ1 : 7 v/v was undetectable.
This bathochromic shift was consistent with the reported re-
sult for an aza-crowned phthalimide.14) To the contrary, a
hypochromic shift of fluorescence was observed with in-
creasing solvent polarity in the case of 12d. The excitation
and emission maxima (nm) shifted from 401/516 (DMSO) to
403/469 (DMSO : PBSϭ1 : 1 v/v) and 403/470 (DMSO :
PBSϭ1 : 7 v/v). The excitation and emission intensities of
12d were also decreased in polar solvents, but the degree of
the decrease was less than in the case of 11d. The mecha-
nisms underlying these results remain unclear.
In conclusion, fluorescent LXR antagonists based on pre-
viously reported N-phenylphthalimide were developed. The
fluorescence intensity and emission maxima of the present
series of probes were dependent on environmental polarity.
As the binding site of LXR is highly hydrophobic, an in-
crease in fluorescence intensity is expected to occur upon
specific binding of the present series of compounds to
LXR,15) so 11d and 12d should be good candidate probes for
an LXR-binding assay system. Optimization of the assay for-
mat is in progress.
FAB-MS m/z: 343 (MϩH)ϩ. 11b; 1H-NMR (500 MHz, CDCl3) d: 7.74
(d, Jϭ8.4 Hz, 1H), 7.05—7.40 (m, 10H), 6.89 (dd, Jϭ8.4, 2.1 Hz, 1H),
4.40 (s, 2H), 2.80 (m, 4H); FAB-MS m/z: 343 (MϩH)ϩ. 11c; 1H-NMR
(500 MHz, CDCl3) d: 6.80—7.50 (m, 11H), 5.31 (s, 2H), 3.80 (s, 3H),
2.92 (m, 4H); FAB-MS m/z: 373 (MϩH)ϩ. 11d; H-NMR (500 MHz,
1
CDCl3) d: 6.80—7.50 (m, 11H), 4.40 (s, 2H), 3.80 (s, 3H), 2.90 (m,
4H); FAB-MS m/z: 373 (MϩH)ϩ. 12a; 1H-NMR (500 MHz, CDCl3) d:
7.57 (d, Jϭ5.1 Hz, 1H), 7.00—7.40 (m, 11H), 3.13 (s, 6H), 2.83 (m,
4H); FAB-MS m/z: 371 (MϩH)ϩ. 12b; 1H-NMR (500 MHz, CDCl3) d:
7.71 (d, Jϭ8.4 Hz, 1H), 7.05—7.40 (m, 10H), 6.80 (dd, Jϭ8.4, 2.4 Hz,
1H), 4.60 (s, 1H), 2.98 (d, Jϭ4.8 Hz, 3H), 2.83 (m, 4H); FAB-MS m/z:
371 (MϩH)ϩ. 12c; 1H-NMR (500 MHz, CDCl3) d: 6.84—7.54 (m,
11H), 3.80 (s, 3H), 3.13 (s, 6H), 2.90 (m, 4H); FAB-MS m/z: 401
(MϩH)ϩ. 12d; 1H-NMR (500 MHz, CDCl3) d: 7.74 (d, Jϭ8.4 Hz,
1H), 6.83—7.34 (m, 10H), 3.80 (s, 3H), 3.15 (s, 6H), 2.90 (m, 4H);
FAB-MS m/z: 401 (MϩH)ϩ. 13a; 1H-NMR (500 MHz, CDCl3) d: 7.56
(d, Jϭ8.4 Hz, 1H), 7.00—7.40 (m, 11H), 3.53 (q, Jϭ7.5 Hz, 1H), 3.05
(s, 3H), 2.81 (m, 4H); FAB-MS m/z: 357 (MϩH)ϩ. 13b; 1H-NMR
(500 MHz, CDCl3) d: 7.71 (d, Jϭ8.4 Hz, 1H), 7.05—7.40 (m, 10H),
6.80 (dd, Jϭ8.4, 2.4 Hz, 1H), 4.60 (s, 1H), 2.98 (d, Jϭ4.8 Hz, 3H),
2.83 (m, 4H); FAB-MS m/z: 357 (MϩH)ϩ. 13c; H-NMR (500 MHz,
1
CDCl3) d: 6.83—7.53 (m, 11H), 3.80 (s, 3H), 3.35 (q, Jϭ7.5 Hz, 1H),
3.09 (s, 3H), 2.90 (m, 4H); FAB-MS m/z: 387 (MϩH)ϩ. 13d; 1H-NMR
(500 MHz, CDCl3) d: 7.73 (d, Jϭ8.4 Hz, 1H), 6.82—7.35 (m, 10H),
3.80 (s, 3H), 3.55 (q, Jϭ7.5 Hz, 1H), 3.09 (s, 3H), 2.90 (m, 4H); FAB-
MS m/z: 387 (MϩH)ϩ.
14) Okamoto H., Kohno M., Satake K., Kimura M., Bull. Chem. Soc. Jpn.,
78, 2180—2187 (2005).
15) Soujanya T., Krishna T. S. R., Samanta A., J. Phys. Chem., 96, 8544—
8548 (1992).