condition. Finally, the competition experiments were also
carried by adding Cu2+ to the solution of 1 in the presence of
5 equiv. of other metal ions, and the results revealed that Cu2+-
induced fluorescence response was unaffected in the background
of metal ions mentioned above (Fig. 3c).
The EDTA-adding experiments were conducted to examine the
reversibility of this reaction. Addition of EDTA to the solution
containing 1 and Cu2+ diminishes the absorbance significantly,
whereas readdition of excess Cu2+ could recover the absorbance
signal (Fig. 2 (top)). The Cu2+-induced coloration and emission of
1 with Cu2+ leading to spirocycle opening of 1, as is the case for
related rhodamine-based probes.6
Similar to many reported rhodamine spirolactam-based flu-
orescent probes,6 the fluorescence enhancement response of 1
toward Cu2+ is most likely the result of the spiro ring-opening
mechanism rather than an ion-catalyzed hydrolysis reaction. The
above-mentioned EDTA experiment could serve as experimental
evidence to support this reversible spiro ring-opening mechanism.
The proposed binding mechanism of 1 with Cu2+ was shown in
the bottom of Fig. 2.
In summary, a new rhodamine derivative used as selective and
sensitive probe was developed, which could specifically recognize
Cu2+ in the aqueous buffer solution by the “naked eye”, UV/vis
and fluorescent responses. Furthermore, it also showed a “turn-
on” type of absorption and fluorescence response. The quenching
effect of water will limit the probes applicability in biological milieu
at some extent. However, by simple modified with hydrophilic
groups, we believed that this kind probe can be used for many
practical applications, including biological systems.
3 (a) G. Multhaup, A. Schlicksupp, L. Hesse, D. Beher, T. Ruppert, C. L.
Masters and K. Beyreuther, Science, 1996, 271, 1406; (b) R. A. Lovstad,
BioMetals, 2004, 17, 111.
4 (a) L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti and
D. Sacchi, Chem.–Eur. J., 1996, 2, 75; (b) A. Torrado, G. K. Walkup
and B. Imperiali, J. Am. Chem. Soc., 1998, 120, 609; (c) Y. J. Zheng, Q.
Huo, P. Kele, F. M. Andreopoulos, S. M. Pham and R. M. Leblanc, Org.
Lett., 2001, 3, 3277; (d) Y. T. Li and C. M. Yang, Chem. Commun., 2003,
2884; (e) N. Shao, Y. Zhang, S. M. Cheung, R. H. Yang, W. H. Chan, T.
Mo, K. A. Li and F. Liu, Anal. Chem., 2005, 77, 7294; (f) S. H. Kim, J.
S. Kim, S. M. Park and S. K. Chang, Org. Lett., 2006, 8, 371; (g) J. K.
Choi, S. H. Kim, J. Yoon, K. H. Lee, R. A. Bartsch and J. S. Kim, J. Org.
Chem., 2006, 71, 8011; (h) Y. Zheng, X. Cao, J. Orbulescu, V. Konka, F.
M. Andreopoulos, S. M. Pham and R. M. Leblanc, Anal. Chem., 2003,
75, 1706; (i) S. M. Park, M. H. Kim, J. I. Choe, K. T. No and S. K.
Chang, J. Org. Chem., 2007, 72, 3550; (j) Y. Q. Wen, F. Yue, Y. R. Zhong
and B. H. Ye, Inorg. Chem., 2007, 46, 6837; (k) S. Khatua, S. H. Choi,
J. Lee, J. O. Huh, Y. Do and D. G. Churchill, Inorg. Chem., 2009, 48,
1799.
5 (a) V. Dujols, F. Ford and A. W. Czarnik, J. Am. Chem. Soc., 1997,
119, 7386; (b) J. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129, 9838;
(c) Y. Xiang, A. J. Tong, P. Y. Jin and Y. Ju, Org. Lett., 2006, 8, 2863;
(d) K. M. K. Swamy, S. K. Ko, S. K. Kwon, H. N. Lee, C. Mao, J. M.
Kim, K. H. Lee, J. Kim, I. Shin and J. Yoon, Chem. Commun., 2008,
5915; (e) X. Q. Chen, M. J. Jou, H. Lee, S. Z. Kou, J. Lim, S. W. Nam,
S. Park, K. M. Kim and J. Yoon, Sens. Actuators, B, 2009, 137, 597;
(f) Z. C. Wen, R. Yang, H. He and Y. B. Jiang, Chem. Commun., 2006,
106.
6 (a) A. Coskun and E. U. Akkaya, J. Am. Chem. Soc., 2006, 128, 14474;
(b) X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun and T. Xu,
J. Am. Chem. Soc., 2007, 129, 1500; (c) B. Liu and H. Tian, Chem.
Commun., 2005, 3156; (d) H. Kim, M. Lee, H. Kim, J. Kim and J. Yoon,
Chem. Soc. Rev., 2008, 37, 1465; (e) J. Y. Kwon, Y. J. Jang, Y. J. Lee,
K. M. Kim, M. S. Seo, W. Nam and J. Yoon, J. Am. Chem. Soc., 2005,
127, 10107; (f) Y. K. Yang, K. J. Yook and J. Tae, J. Am. Chem. Soc.,
2005, 127, 16760; (g) H. Zheng, Z. H. Qian, L. Xu, F. F. Yuan, L. D.
Lan and J. G. Xu, Org. Lett., 2006, 8, 859; (h) S. K. Ko, Y. K. Yang,
J. Tae and I. Shin, J. Am. Chem. Soc., 2006, 128, 14150; (i) Y. Xiang
and A. Tong, Org. Lett., 2006, 8, 1549; (j) J. S. Wu, I. C. Hwang, K. S.
Kim and J. S. Kim, Org. Lett., 2007, 9, 907; (k) X. Chen, S. W. Nam,
M. J. Jou, Y. Kim, S. J. Kim, S. Park and J. Yoon, Org. Lett., 2008,
10, 5235; (l) J. H. Soh, K. M. K. Swamy, S. K. Kim, S. Kim, S. H.
Lee and J. Yoon, Tetrahedron Lett., 2007, 48, 5966; (m) Y. Zhao, X. B.
Zhang, Z. X. Han, L. Qiao, C. Y. Li, L. X. Jian, G. L. Shen and R.
Q. Yu, Anal. Chem., 2009, 81, 7022; (n) J. J. Du, J. L. Fan, X. J. Peng,
P. P. Sun, J. Y. Wang, H. L. Li and S. G. Sun, Org. Lett., 2010, 12,
476.
This work was supported by the Department of Science and
Technology of Shandong Province of China (2008GG20005005),
the National Natural Science Foundation of China (20975089)
and the 100 Talents Program of the Chinese Academy of Sciences.
Notes and references
1 S. Hu, P. Furst and D. Hamer, New Biol., 1990, 2, 544.
2 C. Barranguet, F. P. van den Ende, M. Rutgers, A. M. Breure, M.
Greijdanus, J. J. Sinke and W. Admiraal, Environ. Toxicol. Chem., 2003,
22, 1340.
7 M. I. Rodr´ıguez-Ca´ceres, R. A. Agbaria and I. M. Warner, J. Fluoresc.,
2005, 15, 185.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 5277–5279 | 5279
©