pubs.acs.org/joc
SCHEME 1. Catalytic Asymmetric Cyclopropanation of Electron-
Deficient Olefins with Sulfur Ylides
Asymmetric Cyclopropanation of β,γ-Unsaturated
r-Ketoesters with Stabilized Sulfur Ylides Catalyzed
by C2-Symmetric Ureas
Ying Cheng, Jing An, Liang-Qiu Lu, Lan Luo,
Zheng-Yi Wang, Jia-Rong Chen,* and Wen-Jing Xiao*
Key Laboratory of Pesticide & Chemical Biology, Ministry of
Education, College of Chemistry, Central China Normal
University, 152 Luoyu Road, Wuhan, Hubei 430079, China
wxiao@mail.ccnu.edu.cn; jiarongchen2003@yahoo.com.cn
Received August 30, 2010
decades.2 Of the most important methods available, asym-
metric cyclopropanation of electron-deficient olefins with
ylides, pioneered by Corey in 1965,3 is an attractive strategy.
For example, Dai and Tang4 have elegantly developed an
enantioselective synthesis of vinylcyclopropanes using chiral
telluronium and sulfonium ylides. However, catalytic asym-
metric cyclopropanation of electron-deficient olefins with
ylides is very rare. In this regard, the groups of Aggarwal5
and Gaunt6 first disclosed enantioselective cyclopropanations
by the catalytic generation of chiral sulfonium and ammonium
ylides. Recently, Shibasaki7 successfully developed a La-Li
(biphenyldiolate)3/NaI complex-promoted asymmetric cyclo-
propanation of enones with dimethyloxosulfonium methylide
(Scheme 1A). Notably, MacMillan ingeniously achieved a
highly enantioselective organocatalytic cyclopropanation of
R,β-unsaturated aldehydes with stabilized sulfonium ylides
based on iminium catalysis and directed electrostatic activa-
tion by the use of 2-carboxylic acid dihydroindole as the
catalyst (Scheme 1B).8,9 Despite advances, the further devel-
opment of efficient and practical organocatalytic systems10
A novel organocatalytic asymmetric cyclopropanation of
β,γ-unsaturated R-ketoesters with stabilized sulfur ylides
using C2-symmetric urea as a hydrogen-bond catalyst has
been described. This reaction allows an efficient access to
1,2,3-trisubstituted cyclopropane derivatives in moderate
to good yields with up to 16:1 dr and 90:10 er under mild
reaction conditions. The mechanism study proved that
the high stereoinduction originated from the cooperative
effect of the hydrogen-bond catalyst.
(5) (a) Aggarwal, V. K.; Smith, H. W.; Hynd, G.; Jones, R. V. H.;
Fieldhouse, R.; Spey, S. E. J. Chem. Soc., Perkin Trans. 1 2000, 3267.
(b) Aggarwal, V. K.; Alsono, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni,
M. Angew. Chem., Int. Ed. 2001, 40, 1433. (c) For a recent comprehensive
mechanistic study, see: Riches, S. L.; Saha, Filgueira, N. F.; Grange, E.;
McGarrigle, E. M.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 7626.
(6) Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J.
Angew. Chem., Int. Ed. 2004, 43, 4641.
(7) (a) Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M.
J. Am. Chem. Soc. 2007, 129, 13410. With stoichiometric amount of Lewis
acids and a chiral ligand: (b) Mamai, A.; Madalengoita, J. S. Tetrahedron
Lett. 2000, 41, 9009.
The cyclopropane motif is a common structural subunit in
many natural products and biologically active molecules and
serves as a versatile and important building block in organic
synthesis because of its unique combination of reactivity and
structural properties.1 Consequently, great research efforts
have been directed toward the stereoselective construction
of such three-membered carbocyclic rings over the last few
(1) (a) Taber, D. F. In Comprehensive Organic Sythesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: New York, 1991; Vol. 3, p 1045. (b) Donaldson,
W. A. Tetrahedron 2001, 57, 8589. (c) Pietruszka, J. Chem. Rev. 2003, 103,
1051. (d) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
(2) Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. Chem. Rev.
2003, 103, 977.
(8) (a) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127,
3240. For similar works, see: (b) Hartikka, A.; Arvidsson, P. I. J. Org. Chem.
ꢀ
ꢀ
2007, 72, 5874. (c) Hartikka, A.; Slosarczyk, A. T.; Arvidsson, P. I. Tetra-
hedron: Asymmetry 2007, 18, 1403. (d) Zhao, Y.-H.; Zhao, G.; Cao, W.-G.
Tetrahedron: Asymmetry 2007, 18, 2462.
(9) For other organocatalytic approaches, see also: (a) Arai, S.; Nakaya-
ma, K.; Ishida, T.; Shioiri, T. Tetrahedron Lett. 1999, 40, 4215. (b) Rios, R.;
(3) (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
(b) Payne, G. B. J. Org. Chem. 1967, 32, 3351.
ꢀ
ꢀ
Sunden, H.; Vesely, J.; Zhao, G.-L.; Dziedzic, P.; Cordova, A. Adv. Synth.
Catal. 2007, 349, 1028. (c) Xie, H.-X.; Zu, L.-S.; Wang, J.; Wang, W. J. Am.
Chem. Soc. 2007, 129, 10886.
(4) (a) Ye, S.; Huang, Y.-Z.; Xia, C.-A.; Tang, Y.; Dai, L.-X. J. Am.
Chem. Soc. 2002, 124, 2432. (b) Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem.
Soc. 2003, 125, 13030. For more related work, see: (c) Zheng, J.-C.; Liao,
W.-W.; Tang, Y.; Sun, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2005, 127, 12222.
(d) Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.;
Wu, Y.-D.; Dai, L.-X. J. Am. Chem. Soc. 2006, 128, 9730. (e) Zhu, B.-H.;
Zhou, R.; Zheng, J.-C.; Deng, X.-M.; Sun., X.-L.; Sheng, Q.; Tang, Y. J. Org.
Chem. 2010, 75, 3454.
(10) For recent general reviews on organocatalysis, see: (a) Berkessel, A.;
€
Groger, H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005.
(b) Dalk, P. I. Enantioselective Organocatalysis: Reactions and Experimental
Procedures; Wiley-VCH: Weinheim, 2007; Vol. 1. (c) Yu, X.; Wang, W.
Chem. Asian J. 2008, 3, 516. (d) Bertelsen, S.; Jørgensen, K. A. Chem. Soc.
Rev. 2009, 38, 2178. (e) Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 1360.
DOI: 10.1021/jo101699r
r
Published on Web 12/08/2010
J. Org. Chem. 2011, 76, 281–284 281
2010 American Chemical Society