Journal of the American Chemical Society
ARTICLE
given the complexity of the hexasaccharide component. In this
case, a 75% yield of coupled product was obtained, and the excess
peptide thioacid had decomposed to carboxylic acid and
aspartimide (entry 8). Coupling of peptide 11 with dodeca-
saccharide 16 gave glycopeptide 33 in 49% yield (entry 9).
The aspartylation of peptide 11 with the complex tridecasac-
charide 17 proceeded in 39% yield (entry 10). By comparison,
aspartylation under standard conditions18 is accomplished in
only 20% yield following the use of larger excesses of peptide
thioacid acyl donors.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
Support was provided by the National Institutes of Health
(CA103823 to S.J.D.). We thank Dr. George Sukenick, Ms. Hui
Fang, and Ms. Sylvi Rusli of the Sloan-Kettering Institute’s NMR
core facility for mass spectral and NMR spectroscopic analysis,
and Ms. Rebecca Wilson and Dr. William Berkowitz for valuable
discussions.
’ REFERENCES
(1) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
(2) Rudd, P. M.; Elliot, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A.
Science 2001, 291, 2370.
(3) Varki, A. Glycobiology 1993, 3, 97.
(4) For a recent review, see: Kan, C.; Danishefsky, S. J. Tetrahedron
2009, 65, 9047.
(5) For a recent review, see: Gamblin, D. P.; Scanlan, E. M.; Davis,
B. G. Chem. Rev. 2009, 109, 131.
(6) (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl.
1996, 35, 1380. (b) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed.
2000, 39, 836.
(7) Wan, Q.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46, 9248.
(8) (a) Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2008, 47, 8521. (b) Chen, J.; Wang, P.; Zhu, J.; Wan, Q.;
Danishefsky, S. J. Tetrahedron Lett. 2010, 66, 2277.
(9) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2010,
49, 9500.
(10) For a highly creative simulation of asparagine linkages, see:
Rabuka, D.; Forstner, M. B.; Groves, J. T.; Bettozzi, C. R. J. Am. Soc.
Chem. 2008, 130, 5947.
(11) (a) Cohen-Anisfeld, S. T.; Lansbury, P. T. J. Am. Chem.
Soc. 1993, 115, 10531. (b) Anisfeld, S. T.; Lansbury, P. T. J. Org. Chem.
1990, 55, 5560. For an excellent catalog of other aspartylation methods,
see ref 5.
’ CONCLUSION
(12) (a) Bodanszky, M.; Natarajan, S. J. Org. Chem. 1975, 40, 2495.
(b) Bodanszky, M.; Kwei, J. Z. Int. J. Pept. Protein Res. 1978, 12, 69.
(c) Tam, J. P.; Riemen, M. W.; Merrifield, R. B. Pept. Res. 1988, 1, 6.
(13) (a) Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446.
(b) Li, X.; Yuan, Y.; Kan, C.; Danishefsky, S. J. J. Am. Chem. Soc. 2008,
130, 13225 and references to the original isonitrile literature therein.
(14) (a) Wu, X.; Li, X.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50,
1523. (b) Yuan, Y.; Zhu, J.; Li, X.; Wu, X.; Danishefsky, S. J. Tetrahedron
Lett. 2009, 50, 2329. (c) Wu, X.; Stockdill, J. L.; Wang, P.; Danishefsky,
S. J. J. Am. Chem. Soc. 2010, 132, 4098.
In summary, we have uncovered (with the aid of significant
happenstance) a highly promising route to accomplish aspar-
tylation of a range of oligosaccharides and peptides, including
those of serious levels of complexity. Of course, the ultimate
utility of the method will require further testing as to “battle-
readiness” in maximally challenging settings. Given the rather
formidable targets, now under very active synthetic pursuit in
our laboratory (erythropoietin (EPO),24 follicle stimulating
hormone (FSH),25 and the glycopeptide recognition element
of IgG antibodies),19b there will be no lack of opportunities for
such evaluations.
In conclusion, we describe herein the development of a novel,
base-free method for the aspartylation of peptides and complex
glycans. Under this protocol, the significant problem of peptide
aspartimide formation is largely attenuated. Application of this
protocol to the synthesis of complex glycoprotein fragments is
now underway.
(15) Rao, Y.; Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131,
12924.
(16) (a) Of course, the resultant thio-formamide could be recycled
to the amine precursor of the isonitrile at the manufacture level. (b) We
also note that through the use of hindered isonitriles, the SfN
rearrangement can be suppressed to the point where it is negligible.
(17) (a) Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. (b) Lloyd-
Williams, P.; Albericio, F.; Giralt, E. Tetrahedron 1993, 49, 11065.
(18) Sole, N. A.; Barany, G. J. Org. Chem. 1992, 57, 5399.
(19) (a) Wu, B.; Hua, Z.; Warren, J. D.; Ranganathan, K.; Wan, Q.;
Chen, G.; Tan, Z.; Chen, J.; Endo, A.; Danishefsky, S. J. Tetrahedron Lett.
2006, 47, 5577. (b) Wang, P.; Zhu, J.; Yuan, Y.; Danishefsky, S. J. J. Am.
Chem. Soc. 2009, 131, 16669. For the synthesis of hexasaccharide 15, see
the Supporting Information.
’ ASSOCIATED CONTENT
S
Supporting Information. General experimental proce-
b
dures, including spectroscopic and analytical data for new
compounds. This material is available free of charge via the
(20) Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 17045.
(21) K€onig, W.; Geiger, R. Chem. Ber. 1970, 103, 788.
(22) Liu, R.; Orgel, L. E. Nature 1997, 389, 52.
1601
dx.doi.org/10.1021/ja110115a |J. Am. Chem. Soc. 2011, 133, 1597–1602