broad categories: one is the formation of the pyrrole core as
the key step, and the other is the functionalization of the
pre-existing pyrrole.
Scheme 1. Retrosynthesis of Lamellarins D and H
Recently, we developed a simple and efficient method for
the synthesis of 1,3,4-trisubstituted or 3,4-disubstituted
pyrroles, especially 3,4-diaryl-substituted derivatives, from
simple, readily available aldehydes and amines (anilines) by
using an AgOAc-mediated oxidative coupling reaction in a
one-pot manner.13 Herein, we reported a concise total
synthesis of lamellarins D, H, and R and ningalin B by using
this novel pyrrole synthesis approach as the key step in a
biomimetic manner.
From the biosynthesis point of view, the pentacyclic forms
of lamellarin D and its siblings are generated from their
simpler counterparts (analogues to 7 or 6) through two
consecutive oxidative cyclizations that lead to the formation
of bonds A and B as indicated in structure 1 (Scheme 1).3,4d
(4) (a) Banwell, M.; Flynn, B.; Hockless, D. Chem. Commun. 1997,
2259–2260. (b) Banwell, M. G.; Flynn, B. L.; Hamel, E.; Hockless, D. C. R.
Chem. Commun. 1997, 207–208. (c) Banwell, M. G.; Flynn, B. L.; Hockless,
D. C. R.; Longmore, R. W.; Rae, A. D. Aust. J. Chem. 1999, 52, 755–765.
(d) Axford, L. C.; Holden, K. E.; Hasse, K.; Banwell, M. G.; Steglich, W.;
Wagler, J.; Willis, A. G. Aust. J. Chem. 2008, 61, 80–93. (e) Hasse, K.;
Willis, A. C.; Banwell, M. G. Aust. J. Chem. 2009, 62, 683–691.
(5) (a) Ishibashi, F.; Miyazaki, Y.; Iwao, M. Tetrahedron 1997, 53,
5951–5962. (b) Fujikawa, N.; Ohta, T.; Yamaguchi, T.; Fukuda, T.;
Ishibashi, F.; Iwao, M. Tetrahedron 2006, 62, 594–604. (c) Yamaguchi,
T.; Fukuda, T.; Ishibashi, F.; Iwao, M. Tetrahedron Lett. 2006, 47, 3755–
3757. (d) Marco, E.; Laine, W.; Tardy, C.; Lansiaux, A.; Iwao, M.; Ishibashi,
F.; Bailly, C.; Gago, F. J. Med. Chem. 2005, 48, 3796–3807. (e) Fukuda,
T.; Sudo, E.; Shimokawa, K.; Iwao, M. Tetrahedron 2008, 64, 328–338.
(f) Ohta, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. J. Org. Chem. 2009, 74,
8143–8153.
Also, the simpler conterparts are generated from DOPA (2-
amino-3-(3′,4′-dihydroxyphenyl)propionic acid) metabolic
products by oxidative coupling (formation of bond C).3,14
Therefore, biosynthetically, the skeleton of the lamellarins
is formed mainly through oxidative coupling reactions, and
the lamellarins proper represent higher oxidation states.
Inspired by the lamellarin biosynthesis pathway, our ret-
rosynthetic analysis of 1 and 2 is outlined in Scheme 1.
Lamellarins D (1) and H (2) could be synthesized from 5
by using PIFA oxidation according to Iwao’s work.5b Lactone
5 was envisioned by Pb(OAc)4-mediated oxidative lacton-
ization of acid 6.3a,b The acid 6 could be formed by the
Vilsmeier-Haack reaction of 7, followed by Lindgren
oxidation of the corresponding aldehyde.15 The key inter-
mediate pyrrole 7 could be obtained from an AgOAc-
mediated oxidative coupling reaction from aldehyde 8 and
amine 9.
The synthesis of aldehyde 8 and amine 9 is shown in
Scheme 2. Isopropyl protection of the hydroxyl group of the
commercially available vanillin afforded 10 in 97% yield.
Wittig reaction of O-isopropylvanillin (10) with the ylide
generated from (methoxymethyl)triphenylphosphonium chlo-
ride and t-BuOK afforded the enol ether 11 in 82% yield as
an E/Z mixture. Acid-catalyzed hydrolysis of 11 provided
crude aldehyde 8, which was used for the pyrrole synthetic
step without further purification due to its instability. Amine
9 was prepared from commercially available isovanillin
following literature procedures.3b,5b
(6) (a) Boger, D. L.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin,
Q. J. Am. Chem. Soc. 1999, 121, 54–62. (b) Boger, D. L.; Soenen, D. R.;
Boyce, C. W.; Hedrick, M. P.; Jin, Q. J. Org. Chem. 2000, 65, 2479–2483.
(c) Hamasaki, A.; Zimpleman, J. M.; Hwang, I.; Boger, D. L. J. Am. Chem.
Soc. 2005, 127, 10767–10770.
(7) (a) Ruchirawat, S.; Mutarapat, T. Tetrahedron Lett. 2001, 42, 1205–
1208. (b) Ploypradith, P.; Jinaglueng, W.; Pavaro, C.; Ruchirawat, S.
Tetrahedron Lett. 2003, 44, 1363–1366. (c) Ploypradith, P.; Mahidol, C.;
Sahakitpichan, P.; Wongbundit, S.; Ruchirawat, S. Angew. Chem., Int. Ed.
2004, 43, 866–868. (d) Ploypradith, P.; Kagan, R. K.; Ruchirawat, S. J.
Org. Chem. 2005, 70, 5119–5125. (e) Ploypradith, P.; Petchmanee, T.;
Sahakitpichan, P.; Litvinas, N. D.; Ruchirawat, S. J. Org. Chem. 2006, 71,
9440–9448.
(8) Ridley, C. P.; Reddy, M. V. R.; Rocha, G.; Bushman, F. D.; Faulkner,
D. J. Bioorg. Med. Chem. 2002, 10, 3285–3290.
(9) (a) Gupton, J. T.; Krumpe, K. E.; Burnham, B. S.; Webb, T. M.;
Shuford, J. S.; Sikorski, J. A. Tetrahedron 1999, 55, 14515–14522. (b)
Gupton, J. T.; Banner, E. J.; Sartin, M. D.; Coppock, M. B.; Hempel, J. E.;
Kharlamova, A.; Fisher, D. C.; Giglio, B. C.; Smith, K. L.; Keough, M. J.;
Smith, T. M.; Kanters, R. P. F.; Dominey, R. N.; Sikorski, J. A. Tetrahedron
2008, 64, 5246–5253.
(10) Handy, S. T.; Zhang, Y. N.; Bregman, H. J. Org. Chem. 2004, 69,
2362–2366.
´
(11) (a) Cironi, P.; Manzanares, I.; Albericio, F.; Alvarez, M. Org. Lett.
2003, 5, 2959–2962. (b) Pla, D.; Marchal, A.; Olsen, C. A.; Albericio, F.;
´
Alvarez, M. J. Org. Chem. 2005, 70, 8231–8234. (c) Pla, D.; Marchal, A.;
´
Olsen, C. A.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. J. Med.
Chem. 2006, 49, 3257–3268.
(12) For miscellaneous approaches, see: (a) Diaz, M.; Guitian, E.;
Castedo, L. Synlett 2001, 7, 1164–1166. (b) Barun, O.; Chakrabarti, S.;
Junjappa, I. H. H. J. Org. Chem. 2001, 66, 4457–4461. (c) Kim, S.; Son,
S.; Kang, H. Bull. Korean Chem. Soc. 2001, 22, 1403–1406. (d) Bullington,
J. L.; Wolff, R. R.; Jackson, P. F. J. Org. Chem. 2002, 67, 9439–9442. (e)
Nyerges, M.; Toke, L. Tetrahedron Lett. 2005, 46, 7531–7534. (f) Su, S.;
Porco, J. A., Jr. J. Am. Chem. Soc. 2007, 129, 7744–7745. (g) Liermann,
J. C.; Opatz, T. J. Org. Chem. 2008, 73, 4526–4531. (h) Korotaev, V. Y.;
Sosnovskikh, V. Y.; Kutyashev, I. B.; Barkov, A. Y.; Shklyaev, Y. V.
Tetrahedron Lett. 2008, 49, 5376–5379. (i) Yadav, J. S.; Gayathri, K. U.;
Redd, B. V. S.; Prasad, A. R. Synlett 2009, 43–46.
With aldehyde 8 and amine 9 in hand, they were subjected
to the crucial AgOAc-mediated oxidative coupling reaction,
(14) Kang, H.; Fenical, W. J. Org. Chem. 1997, 62, 3254–3262
.
(15) For a discussion of the Lindgren/Pinnick oxidation nomenclature,
see: Hayashida, J.; Rawal, V. H. Angew. Chem., Int. Ed. 2008, 47, 4373–
4376.
(13) Li, Q.; Fan, A.; Lu, Z.; Cui, Y.; Lin, W.; Jia, Y. Org. Lett. 2010,
12, 4066–4069.
Org. Lett., Vol. 13, No. 2, 2011
313