April 2001
351
Table 3. Spectral Data for 5-Substituted Oxazolidinones
No.
1H-NMR (in DMSO-d6) d (ppm)
8
1.81 (3H, s), 1.80—1.90 (2H, m), 2.74 (4H, t, Jϭ5 Hz), 3.10—3.25 (2H, m), 3.22 (4H, t, Jϭ5 Hz), 3.69 (1H, dd, Jϭ9, 8.5 Hz), 4.11
(1H, t, Jϭ9 Hz), 4.60—4.70 (1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.19 (1H, dd, Jϭ9, 2.5 Hz), 7.46 (1H, dd, Jϭ14.5, 2.5 Hz), 7.83 (1H, brs)
2.65—2.80 (4H, m), 3.17—3.30 (4H, m), 3.53 (1H, dd, Jϭ15, 6.5 Hz), 3.62 (1H, dd, Jϭ15, 3.5 Hz), 3.73 (1H, dd, Jϭ9, 6 Hz), 4.12
(1H, t, Jϭ9 Hz), 4.75—4.83 (1H, m), 7.10 (1H, t, Jϭ8.5 Hz), 7.19 (1H, dd, Jϭ8.5, 2 Hz), 7.37 (3H, br s), 7.47 (1H, dd, Jϭ14.5, 2 Hz),
8.07 (1H, br s)
12
13
14
15
2.74 (4H, t, Jϭ5.5 Hz), 3.22 (4H, t, Jϭ5.5 Hz), 3.79 (1H, dd, Jϭ9, 6.5 Hz), 3.96 (2H, t, Jϭ5.5 Hz), 4.13 (1H, t, Jϭ9 Hz), 4.90—5.00
(1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.17 (1H, dd, Jϭ9, 2.5 Hz), 7.45 (1H, dd, Jϭ14.5, 2.5 Hz), 9.36 (1H, d, Jϭ5.5 Hz), 10.5 (1H, brs)
2.44 (3H, s), 2.74 (4H, t, Jϭ4.5 Hz), 3.22 (4H, t, Jϭ4.5 Hz), 3.80 (1H, t, Jϭ8 Hz), 3.85—3.95 (2H, m), 4.12 (1H, t, Jϭ9 Hz), 4.90—
5.00 (1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.19 (1H, dd, Jϭ9, 1 Hz), 7.45 (1H, dd, Jϭ14.5, 1 Hz), 10.2 (1H, brs)
1.15 (3H, t, Jϭ7.5 Hz), 2.59 (2H, q, Jϭ7.5 Hz), 2.74 (4H, t, Jϭ5 Hz), 3.20 (4H, t, Jϭ5 Hz), 3.80 (1H, dd, Jϭ9, 6 Hz), 3.85—4.00 (2H,
m), 4.12 (1H, t, Jϭ9 Hz), 4.90—5.00 (1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.17 (1H, dd, Jϭ9, 2.5 Hz), 7.45 (1H, dd, Jϭ14.5, 2.5 Hz), 10.2
(1H, br s)
16
17
18
19
20
21
2.74 (4H, t, Jϭ5 Hz), 3.22 (4H, t, Jϭ5 Hz), 3.70—3.85 (3H, m), 4.08 (1H, t, Jϭ9 Hz), 4.78—4.84 (1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.18
(1H, dd, Jϭ9, 2.5 Hz), 7.19 (2H, brs), 7.46 (1H, dd, Jϭ14.5, 2.5 Hz), 7.84 (1H, t, Jϭ6 Hz)
2.74 (4H, t, Jϭ5 Hz), 2.84 (3H, brs), 3.22 (4H, t, Jϭ5 Hz), 3.75—3.85 (3H, m), 4.08 (1H, t, Jϭ9 Hz), 4.81—4.90 (1H, m), 7.09 (1H, t,
Jϭ8.5 Hz), 7.17 (1H, dd, Jϭ8.5, 2.5 Hz), 7.45 (1H, dd, Jϭ14.5, 2.5 Hz), 7.52 (1H, brs), 7.65 (1H, t, Jϭ6 Hz)
1.05 (3H, t, Jϭ7 Hz), 2.73 (4H, t, Jϭ5 Hz), 3.22 (4H, t, Jϭ5 Hz), 3.38 (2H, brs), 3.80—3.85 (3H, m), 4.08 (1H, t, Jϭ9 Hz), 4.81—4.87
(1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.18 (1H, dd, Jϭ9, 2 Hz), 7.45 (1H, dd, Jϭ14.5, 2 Hz), 7.52 (1H, brs), 7.56 (1H, t, Jϭ5.5 Hz)
2.74 (4H, t, Jϭ5 Hz), 3.16 (6H, s), 3.20 (4H, t, Jϭ5 Hz), 3.76—4.10 (3H, m), 4.20 (1H, t, Jϭ9 Hz), 4.85—4.95 (1H, m), 7.10 (1H, t,
Jϭ8.5 Hz), 7.20 (1H, dd, Jϭ8.5, 2.5 Hz), 7.45 (1H, dd, Jϭ14.5, 2.5 Hz), 7.57 (1H, t, Jϭ5.5 Hz)
2.65—2.80 (4H, m), 3.10—3.30 (4H, m), 3.86 (2H, brs), 3.90 (1H, dd, Jϭ9, 6 Hz), 4.07 (1H, t, Jϭ9 Hz), 4.48 (2H, brs), 4.80—4.90
(1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.18 (1H, dd, Jϭ9, 2.5 Hz), 7.45 (1H, dd, Jϭ14.5, 2.5 Hz), 8.00 (1H, brs), 8.76 (1H, brs)
2.74 (4H, t, Jϭ5 Hz), 2.93 (3H, d, Jϭ4.5Hz), 3.13 (3H, s), 3.22 (4H, t, Jϭ5 Hz), 3.82 (1H, t, Jϭ9 Hz), 3.99 (1H, dd, Jϭ14.5, 9 Hz),
4.08 (1H, t, Jϭ9 Hz), 4.32 (1H, dd, Jϭ14.5, 3.5 Hz), 4.90—4.98 (1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.19 (1H, dd, Jϭ9, 2.5 Hz), 7.45 (1H,
dd, Jϭ14.5, 2.5 Hz), 7.51 (1H, d, Jϭ4.5 Hz)
22
23
2.74 (4H, t, Jϭ5 Hz), 3.22 (4H, t Jϭ5 Hz), 3.47 (2H, t, Jϭ5.5 Hz), 3.72 (1H, dd, Jϭ9, 6 Hz), 4.09 (1H, t, Jϭ9 Hz), 4.70—4.80 (1H, m),
7.09 (1H, t, Jϭ9 Hz), 7.17 (1H, dd, Jϭ9, 2.5 Hz), 7.45 (1H, dd, Jϭ14.5, 2.5 Hz), 8.09 (1H, brs), 8.27 (1H, brs)
0.97 (3H, t, Jϭ7.5 Hz), 2.10 (2H, q, Jϭ7.5 Hz), 2.74 (4H, t, Jϭ5 Hz), 3.22 (4H, t, Jϭ5 Hz), 3.35—3.45 (2H, m), 3.71 (1H, dd, Jϭ9, 6
Hz), 4.07 (1H, t, Jϭ9 Hz), 4.65—4.75 (1H, m), 7.09 (1H, t, Jϭ9 Hz), 7.16 (1H, dd, Jϭ9, 2.5 Hz), 7.44 (1H, dd, Jϭ14.5, 2.5 Hz), 8.02
(1H, t, Jϭ5.5 Hz)
24
2.70—2.80 (4H, m), 3.20—3.30 (4H, m), 3.34 (2H, t, Jϭ5.5 Hz), 3.72 (1H, dd, Jϭ9, 6.5 Hz), 4.06 (1H, t, Jϭ9 Hz), 4.65—4.70 (1H,
m), 5.48 (2H, brs), 6.24 (1H, t, Jϭ6 Hz), 7.08 (1H, t, Jϭ9 Hz), 7.17 (1H, dd, Jϭ9, 2.5 Hz), 7.46 (1H, dd, Jϭ14.5, 2.5 Hz)
The reaction mixture was washed with water, dried and concentrated to af- References and Notes
ford 21 as pale yellow crystals. The physicochemical data are listed in Ta-
bles 2 and 3.
1) Gregory W. A., Brittelli D. R., Wang C.-L. J., Wuonola M. A., McRip-
ley R. J., Eustice D. C., Eberly V. S., Bartholomew P. T., Slee A. M.,
Forbes M., J. Med. Chem., 32, 1673—1681 (1989).
(S)-N-[[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5-oxazo-
lidinyl]methyl]formamide (22) A mixture of 10 (1.00 g, 3.21 mmol) and
ethyl formate (3.00 ml, 38.5 mmol) in EtOH (10 ml) was refluxed for 17 h.
After cooling, the reaction mixture was concentrated. The residue was
washed with EtOH to afford 22 as colorless crystals. The physicochemical
data of compound 22 are listed in Tables 2 and 3.
2) Slee A. M., Wuonola M. A., McRipley R. J., Zajac I., Zawada M. J.,
Bartholomew P. T., Gregory W. A., Forbes M., Antimicrob. Agents
Chemother., 31, 1791—1797 (1987); Barry A. L., ibid., 32, 150—152
(1988); Neu H.C., Novelli A., Saha G., Chin N.-X., ibid., 32, 580—
583 (1988).
(S)-N-[[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5-oxazo-
lidinyl]methyl]propionamide (23) To a mixture of 10 (1.00 g, 3.21 mmol)
and Et3N (0.49 ml, 3.53 mmol) in THF (10 ml), propionyl chloride (0.31 ml,
3.53 mmol) was added under ice cooling, followed by stirring at the same
temperature for 5 h. Then the reaction mixture was washed with water and
extracted with AcOEt. The extract was dried and concentrated to afford 23
as pale brown crystals. The physicochemical data are listed in Tables 2 and
3.
3) Eustice D. C., Feldman P.A., Zajac I., Slee A. M., Antimicrob. Agents.
Chemother., 32, 1218—1222 (1988).
4) Barbachyn M. R., Brickner S. J., Hutchinson D. K., World Intellectual
Property Organization 9507271 (1995) [Chem. Abstr., 123, 256742f
(1995)]; Barbachyn M. R., Hutchinson D. K., Brickner S. J., Cynamon
M. H., Kilburn J. O., Klemens S. P., Glickman S. E., Grega K. C.,
Hendges S. K., Toops D. S., Ford C. W., Zurenko G. E., J. Med.
Chem., 39, 680—685 (1996).
(S)-N-[[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5-oxazolidinyl]
methyl]urea (24) A mixture of 10 (0.30 g, 0.963 mmol) and sodium
cyanate (0.22 g, 2.89 mmol) in acetic acid-water 1 : 1 (2.4 ml) was stirred at
room temperature for 4 h. The reaction mixture was evaporated, and the
residue was washed with water to afford 24 as colorless crystals. The physic-
ochemical data of compound 24 are listed in Tables 2 and 3.
In Vitro Studies These studies were conducted according to the method
of the Japan Society of Chemotherapy.14) The minimum inhibitory concen-
trations (MICs, mg/ml) were determined by an agar dilution method with
Muller-Hinton agar (MHA, Difco Laboratories, Detroit, Mich). Bacterial
suspensions for inocula were prepared by diluting overnight cultures of or-
ganisms to give a final concentration of 106 CFU/ml, and one loopful (5 ml)
of an inoculum, corresponding to about 5ϫ103 CFU per spot was inoculated
on drug-containing agar plates. The plates were incubated for 18—24 h at 37
°C. The MIC was defined as the lowest drug concentration that prevented
visible growth of bacteria.
5) a) Brickner S. J., Hutchinson D. K., Barbachyn M. R., Garmon S. A.,
Grega K. C., Hendges S. K., Manninen P. R., Toops D. S., Ulanowicz
D. A., Kilburn J. O., Glickman S., Zurenko G. E., Ford C. W., 35th In-
terscience Conference on Antimicrobial Agents and Chemotherapy,
San Francisco, September, 1995, abstract No. F 208, p. 149; b) Brick-
ner S. J., Hutchinson D. K., Barbachyn M. R., Manninen P. R.,
Ulanowicz D. A., Garmon S. A., Grega K. C., Hendges S. K., Toops
D. S., Ford C. W., Zurenko G. E., J. Med. Chem., 39, 673—679 (1996).
6) Lin A. H., Murray R. W., Vidmar T. J., Marotti K. R., Antimicrob.
Agents Chemother., 41, 2127—2131 (1997); Shinabarger D. L.,
Marotti K. R, Murray R. W, Lin A. H, Melchior E. P, Swaney S. M,
Dunyak D. S, Demyan W. F, Buysse J. M., ibid., 41, 2132—2136
(1997).
7) Fugitt R. B., Luckenbaugh R. W., European Patent 50827 (1982)
[Chem. Abstr., 97, 109990b. (1982)]; Gregory W. A., European Patent
81200 (1984) [Chem. Abstr., 100, 51564c (1984)].
8) a) Riedl B., Haebich D., Stolle A., Ruppelt M., Bartel S. Guarrieri W.,
Endermann R., Kroll H-P., Ger. Offen. Patent 19601264 (1997)