ORGANIC
LETTERS
2011
Vol. 13, No. 2
296-299
Geometry-Selective Synthesis of E or Z
N-Vinyl Ureas (N-Carbamoyl Enamines)
Julien Lefranc, Daniel J. Tetlow, Morgan Donnard, Alberto Minassi, Erik Ga´lvez,
and Jonathan Clayden*
School of Chemistry, UniVersity of Manchester, Oxford Road,
Manchester, M13 9PL, U.K.
Received November 12, 2010
ABSTRACT
N-Vinyl ureas are emerging as a valuable class of compounds with both nucleophilic and electrophilic reactivity. They may be made by
capturing the enamine tautomer of an imine with an isocyanate, a reaction which in general leads to the E isomer of the vinyl urea. Deprotonation
of such a vinyl urea, or of an allyl urea, generates a dipole stabilized Z-allyl anion which may be protonated to return the Z-vinyl urea.
Isomerization of an allyl urea with a Ru complex provides an alternative route to E-vinyl ureas.
Chemical interest in ureas as a compound class has typically
highlighted their structural and medicinal properties rather
than their reactivity: ureas are generally stable to acid and
base and have powerful hydrogen bonding abilities, making
them key functional components of foldamers1 and other
supramolecular structures,2 ligands or catalysts,3 and drugs.4
Recently, however, some new aspects of the reactivity of
ureas have come to the fore, particularly with regard to
amination chemistry5 and functionalization by selective
lithiation.6,7 We have reported that N-aryl ureas are valuable
starting materials for intramolecular arylation reactions.8,9
In parallel with these reports, it has also become evident that
ureas of certain classes undergo relatively mild solvolysis7,9,10
to reveal amines or isocyanates, further enhancing their
potential utility.
Ureas bearing N-alkenyl substituents 1 (i.e., N-vinyl
ureas, or N-carbamoyl enamines) display useful and
remarkable reactivity toward organolithiums and other
strong bases. They may be deprotonated to yield urea-
substituted allyllithiums,11 or they may undergo umpolung
carbolithiation by nucleophilic attack of the organolithium
on the (nominally nucleophilic) ꢀ-position of the enam-
(5) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem.
Soc. 2005, 127, 7308. Morgen, M.; Bretzke, S.; Li, P.; Menche, D. Org.
Lett. 2010, 12, 4494.
(1) Clayden, J.; Lemie`gre, L.; Helliwell, M. J. Org. Chem. 2007, 72,
2302. Clayden, J.; Lemie`gre, L.; Morris, G. A.; Pickworth, M.; Snape, T. J.;
Jones, L. H. J. Am. Chem. Soc. 2008, 130, 15193. Clayden, J.; Pickworth,
M.; Jones, L. H. Chem. Commun. 2009, 547. Violette, A.; Averlant-Petit,
M. C.; Semetey, V.; Hemmerlin, C.; Casimir, R.; Graff, R.; Marraud, M.;
Briand, J.-P.; Rognan, D.; Guichard, G. J. Org. Chem. 2005, 127, 2156.
Guichard, G.; Fischer, L. Org. Biomol. Chem. 2010, 8, 3101. Fischer, L.;
Claudon, P.; Pendem, N.; Miclet, E.; Didierjean, C.; Ennifar, E.; Guichard,
G. Angew. Chem., Int. Ed. 2010, 49, 1067.
(6) Clayden, J.; Turner, H.; Pickworth, M.; Adler, T. Org. Lett. 2005,
7, 3147. Smith, K.; El-Hiti, G. A.; Hegazy, A. S. Synthesis 2010, 1371.
(7) Houlden, C. E.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett.
2010, 12, 3090.
(8) Clayden, J.; Dufour, J.; Grainger, D.; Helliwell, M. J. Am. Chem.
Soc. 2007, 129, 7488. Bach, R.; Clayden, J.; Hennecke, U. Synlett 2009,
421.
(2) Steed, J. W. Chem. Soc. ReV. 2010, 39, 3686. Pinault, T.; Andrioletti,
B.; Bouteiller, L. Beilstein J. Org. Chem. 2010, 6, 869.
(9) Clayden, J.; Hennecke, U. Org. Lett. 2008, 10, 3567.
(10) Hutchby, M.; Houlden, C. E.; Ford, J. G.; Tyler, S. N. G.; Gagne,
M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., Int. Ed.
2009, 48, 8721.
(3) Connon, S. J. Synlett 2009, 354. Zhang, Z.; Schreiner, P. R. Chem.
Soc. ReV. 2009, 38, 1187.
(4) Dumas, J.; Smith, R. A.; Lowinger, T. B. Curr. Opin. Drug DiscoVery
DeV. 2004, 7, 600.
(11) Tetlow, D. J.; Hennecke, U.; Raftery, J.; Waring, M. J.; Clarke,
D. S.; Clayden, J. Org. Lett. 2010, 12, 5442.
10.1021/ol1027442 2011 American Chemical Society
Published on Web 12/17/2010