1468
S. Krieck et al. / Inorganic Chemistry Communications 13 (2010) 1466–1469
Appendix A. Supplementary material
CCDC 780762 and 773949 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.
References
[1] a) S. Sabo-Etienne, B. Chaudret, Chem. Rev. 98 (1998) 2077–2092;
b) A.J. Hoskin, D.W. Stephan, Coord. Chem. Rev. 233–234 (2002) 107–129.
[2] a) R. Jambor, B. Kasná, K.N. Kirschner, M. Schürmann, K. Jurkschat, Angew. Chem.
120 (2008) 1674–1677;
Angew. Chem. Int. Ed. 47 (2008) 1650–1653;
b) L. Pu, B. Twamley, P.P. Power, J. Am. Chem. Soc. 122 (2000) 3524–3525.
[3] a) W. Grochala, P.P. Edwards, Chem. Rev. 104 (2004) 1283–1316;
b) A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay,
B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew. Chem. 117 (2005)
3644–3648;
Angew. Chem. Int. Ed. 44 (2005) 3578–3582;
c) B. Sakintuna, F. Lamari-Darkim, M. Hirscher, Int. J. Hydrogen Energy 32 (2007)
1121–1140.
[4] a) J. Bergsma, B.O. Loopstra, Acta Crystallogr. 15 (1962) 92–93;
b) A.F. Andresen, A.J. Maeland, D. Slotfeldt-Ellingsen, J. Solid State Chem. 20
(1977) 93–101.
[5] S. Harder, Chem. Rev. 110 (2010) 3852–3876.
[6] a) J. Spielmann, F. Buch, S. Harder, Angew. Chem. 120 (2008) 9576–9580;
Angew. Chem. Int. Ed. 47 (2008) 9434–9438;
b) G. Zeng, S. Li, Inorg. Chem. 49 (2010) 3361–3369.
[7] J. Spielmann, S. Harder, Eur. J. Inorg. Chem. (2008) 1480–1486.
[8] J. Spielmann, S. Harder, Chem. Eur. J. 13 (2007) 8928–8938.
Fig. 2. Molecular structure and numbering scheme of [(thf)(dme)Ca(C6H3-2,6-tol2)
HBEt3] (3). The ellipsoids represent a probability of 40%, H atoms (with the exception of
the bridging B–H) are neglected for clarity reasons. Selected bond lengths (pm): Ca1–
C1 254.8(3), Ca1–O1 235.7(2), Ca1–O2 244.7(2), Ca1–O3 247.1(2), Ca1···B1 293.0(5);
angles (deg.): Ca1–C1–C2 131.7(2), Ca1–C1–C6 111.9(2), C2–C1–C6 114.0(3).
[9] K. Mochida, Y. Hiraga, H. Takeuchi, H. Ogawa, Organometallics
6 (1987)
2293–2297.
[10] J.P. Dunne, M. Tacke, C. Selinka, D. Stalke, Eur. J. Inorg. Chem. (2003) 1416–1425.
[11] S. Harder, J. Brettar, Angew. Chem. 118 (2006) 3554–3558;
Angew. Chem. Int. Ed. 45 (2006) 3474–3478.
[12] S.P. Sarish, A. Jana, H.W. Roesky, T. Schulz, M. John, D. Stalke, Inorg. Chem. 49
(2010) 3816–3820.
[13] A.G.M. Barrett, M.R. Crimmin, M.S. Hill, P.B. Hitchcock, P.A. Procopiou, Organo-
metallics 26 (2007) 4076–4079.
[14] a) See e.g.:J. Langer, K. Wimmer, H. Görls, M. Westerhausen, Dalton Trans.
(2009) 2951–2957;
The molecular structure of (3) is displayed in Fig. 2 [38]. The
bridging hydride was not found by X-ray diffraction but its position is
obvious from the arrangement of the B and Ca atoms as well as from
spectroscopic data. The calcium center is penta-coordinated and in
agreement with the VSEPR model the sterically demanding m-
terphenyl moiety coordinates in the trigonal plane of the resulting
distorted trigonal pyramid, whereas the borohydride binds in axial
position. The Ca–Ci bond length of 254.8(3) pm lies in a characteristic
region for arylcalcium halides, amides, and phosphanides [30a]. Due
to the bulkiness of the attached groups strongly different distal Ca–
C1–C2 [131.7(2)°] and proximal Ca–C1–C6 angles [111.9(2)°] are
observed. The Ca1–B1 bond [293.0(5) pm] is elongated in comparison
to the β-diketiminate stabilized complex [(thf)(dipp-nacnac)Ca(μ-H)
BsecBu3] (Ca–B 286.1(4) pm) [12]. The boron atom is located in a
distorted tetrahedral coordination sphere.
b) L. Orzechowski, G. Jansen, M. Lutz, S. Harder, Dalton Trans. (2009) 2958–2964;
c) K. Izod, C. Wills, W. Clegg, R.W. Harrington, Inorg. Chem. 46 (2007)
4320–4325;
d) L. Deng, H.-S. Chan, Z. Xie, J. Am. Chem. Soc. 128 (2006) 5219–5230;
e) M.J. Harvey, T.P. Hanusa, M. Pink, Chem. Commun. (2000) 489–490.
[15] V.I. Mi-kheev, L.V. Tito, Zh. Neorg. Khim. 9 (1964) 794–798.
[16] E. Hanecker, J. Moll, H. Nöth, Z. Naturforsch. 39b (1984) 424–430.
[17] E.B. Lobkovskii, A.N. Cheklov, M.D. Levicheva, L.V. Tito, Koordinatsionnaya
Khimyia 14 (1988) 543–550.
[18] S. Aldridge, A.J. Downs, Chem. Rev. 101 (2001) 3305–3365.
[19] T.P. Hanusa, Chem. Rev. 93 (1993) 1023–1036.
As crystallographically shown for the crystalline state also spectro-
scopic investigations of (1) and (3) confirm the presence of the boranate
moiety and of metal–hydrogen–boron interactions in solution. In IR
spectra strong B–H stretching modes for (μ-H)-B fragments were
observed for (1) and (3) (1918 and 1926 cm−1) in comparison to
1935 cm−1 for [(thf)2Ca(HBEt3){1,2,4-C5(SiMe3)3H2}] [14e], 1924 and
1906 cm−1 for [(thf)(dipp-nacnac)Ca(μ-H)BsecBu3)] [12], as well as
1870–1950 cm−1 for M[HBEt3] (M=Li, Na, K) [39]. The 11B NMR
resonances are detected in a characteristic region for bridging H–B units
at −15.9 (1) and −15.5 ppm (3) and are similar to −13.3 ppm for [(thf)
(dipp-nacnac)Ca(μ-H)BsecBu3] [12], and to values of Na[HBEt3] [39].
Stabilization of the hydrido complexes has been achieved by
coordination of Lewis acidic BEt3 to the hydride base whereas the
Lewis bases tmta or dme bind to the metal cation thus saturating the
coordination sphere and preventing oligomerization, dismutation and
precipitation of the otherwise insoluble corresponding metal hydrides.
[20] D. Barbier-Baudrey, A. Dormond, M. Visseaux, J. Organomet. Chem. 609 (2000)
21–28.
[21] D. Baudrey, A. Dormond, B. Lachot, M. Visseaux, G. Zucchi, J. Organomet. Chem.
547 (1997) 157–165.
[22] C. Cui, A. Shafir, J.A.R. Schmidt, A.G. Oliver, J. Arnold, Dalton Trans. 8 (2008)
1387–1393.
[23] W.J. Evans, J.M. Perotti, J.W. Ziller, Inorg. Chem. 44 (2005) 5820–5825.
[24] a) A. Jana, D. Ghoshal, H.W. Roesky, I. Objartel, G. Schwab, D. Stalke, J. Am. Chem.
Soc. 131 (2009) 1288–1293;
b) A. Jana, H.W. Roesky, C. Schulzke, A. Döring, Angew. Chem. 121 (2009)
1126–1129;
Angew. Chem. Int. Ed. 48 (2009) 1106–1109.
[25] Synthesis of [(tmta)K-μ(H)BEt3]2 (1): tmta (1.5 mL) was added dropwise to a
solution of commercially available KBEt3H in THF (5 mL, 5.0 mmol) at −25 °C.
After stirring for 4 h at −15 °C all volatiles were removed in vacuo and the residue
was extracted with toluene (6 mL). Storage at −20 °C led to crystallization of
colourless prisms of 1∙(PhMe) (1.05 g, 1.67 mmol, 67%). Physical data of 1∙
(PhMe): Dec. above 33 °C. Anal. Calc. for C31H72B2K2N6 (628.76 g mol−1): C,
59.22; H, 11.54; N, 13.37. Found: C, 59.30; H, 11.72; N, 13.16. 1H NMR
(400.25 MHz, 25 °C, [D6]benzene): δ −0.77 (2H, s(br), B–H), 0.54 (18H, s(br),
CH3, Et), 1.28 (12H, m(br), CH2, Et), 2.10 (18H, s, CH3, tmta), 3.09 (12H, s(br),
CH2N). 13C{1H} NMR (100.65 MHz, 25 °C, [D6]benzene): δ 11.2 (6C, CH2, Et), 12.0
(6C, CH3, Et), 39.7 (6C, CH2N, tmta), 77.8 (6C, CH3, triaz). 11B NMR (128.42 MHz,
25 °C, [D6]benzene): δ −15.9 (2H, m(br), B–H). MS (DEI, m/z [%]): 129 [100]
(tmta), 98 [62] (BEt3). IR (Nujol, KBr, cm−1) ν: 2025, m; 1918, m; 1682, s; 1607, s;
1455, vs; 1376, vs; 1262, s; 1234, m; 1157, m; 1116, vs; 1003, m; 914, s; 860, m;
728, s; 695, s; 622, m; 588, m.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, Bonn-Bad Godesberg, Germany). We also acknowledge gener-
ous financial support by the Fonds der Chemischen Industrie (VCI,
Frankfurt/Main, Germany).
[26] Crystal Structure Determination: The intensity data for the compounds were
collected on a Nonius KappaCCD diffractometer using graphite-monochromated
Mo–Kα radiation. Data were corrected for Lorentz and polarization effects but not for
absorption effects [27,28]. The structures were solved by direct methods