(HOBt) to afford the natural products subereamolline A (1) and B
(2) respectively in 91% and 75% yield as a racemic mixture. Upon
reinvestigation of this coupling step, it was found that the use of
MTS assays36 were performed to evaluate the cytotoxic activity
of compounds ( )-1, ( )-2, (+)-1, (+)-2, 12 and 13 against an
ovarian cancer (SK-OV-3) cell line. Following 48 h treatment,
none of the compounds exhibited cytotoxic activities up to a
concentration of 100 mM.
In conclusion, the first total syntheses of the bromotyrosine-
derived natural products subereamolline A (1) and B (2) have
been reported. The enantiomeric forms of 1 and 2 were obtained
by chiral HPLC separation and, in addition, the stereochemistries
at C(1) and C(6) in the naturally occurring enantiomers (+)-1 and
(+)-2 were confirmed to be R and S respectively.
R
the coupling agent propylphosphonic anhydride (ꢀT3P) furnished
1 and 2 in 96% and 97% yields respectively.
1
The H and 13C NMR spectra of synthetic 1 and 2 matched
those of the natural materials.32 We have also established that
the originally reported 13C chemical shift assignments for C-2
(dC 122.9) and C-4 (dC 114.3) should be switched on the basis
of COLOC NMR experiments reported for related spirocyclised
products.33 This is also supported by the HMBC correlations in
the natural products.34
The enantiomeric forms of ( )-1 and ( )-2 were separated using
preparative chiral HPLC (CHIRALPAK AD-H column and 10%
iPr2OH in hexane at a flow rate of 5 mL min-1) (Scheme 2). The
optical rotations of (+)-1 (t = 40.3 min) and (+)-2 (t = 48.3 min)
agreed with those observed for natural 1 and 2. To confirm the
absolute stereochemistries at C(1) and C(6), (+)-6 (t = 30.9 min)
and (-)-6 (t = 32.9 min) were obtained from chiral HPLC
separation of ( )-6 (Scheme 3).35 Hydrolysis of (+)-6 and (-)-6
under the basic conditions furnished acids (+)-3 and (-)-3 that
were then coupled with amines 4 and 5 respectively. HPLC analysis
of the products showed them to be (+)-1 and (-)-2 respectively
(see Electronic Supplementary Information), thus confirming the
original stereochemical assignments at C(1) and C(6).
Acknowledgements
We acknowledge the Cambridge Cancer Research UK PhD
Training Programme in Medicinal Chemistry for funding (J.W.S.).
The authors thank Dr John E. Davies of the X-ray facility of the
Department of Chemistry for collecting the crystallographic data
and Dr Richard M. Turner for help with preparative chiral HPLC.
Notes and references
1 S. P. Gunasekera and S. S. Cross, J. Nat. Prod., 1992, 55, 509.
2 J. Kobayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T.
Sasaki and Y. Mikami, Tetrahedron, 1991, 47, 6617.
3 J.-H. Jang, R. W. M. van Soest, N. Fusetani and S. Matsunaga, J. Org.
Chem., 2007, 72, 1211.
4 H. Nakamura, H. Wu and J. Kobayashi, Tetrahedron Lett., 1985, 26,
4517.
5 S. A. Ross, J. D. Weete, R. F. Schinazi, S. S. Wirtz, P. Tharnish, P. J.
Scheuer and M. T. Hamann, J. Nat. Prod., 2000, 63, 501.
6 M. W. B. McCulloch, G. S. Coombs, N. Banerjee, T. S. Bugni, K. M.
Cannon, M. K. Harper, C. A. Veltri, D. M. Virshup and C. M. Ireland,
Bioorg. Med. Chem., 2009, 17, 2189.
7 I. Thironet, D. Daloze and J. C. Braekman, Nat. Prod. Lett., 1998, 12,
209.
8 R. A. K. Mierzwa, M. A. Conover, S. Tozzi, M. S. Puar, M. Patel and
S. J. Covan, J. Nat. Prod., 1994, 57, 175.
9 G. M. Nicholas, G. L. Newton, R. C. Fahey and C. A. Bewley, Org.
Lett., 2001, 3, 1543.
10 M. S. Buchanan, A. R. Carroll, G. A. Fechner, A. Boyle, M. Simpson,
R. Addepalli, V. M. Avery, J. N. A. Hooper, T. Cheung, H. Chen and
R. J. Quinn, J. Nat. Prod., 2008, 71, 1066.
11 T. Fujiwara, J.-H. Hwang, A. Kanamoto, H. Nagai, M. Takagi and
S.-Y. Kauzo, J. Antibiot (Tokyo), 2009, 62, 393; P. B. Shinde, Y. M.
Lee, H. T. Dang, J. Hong, C.-O. Lee and J. H. Jung, Bioorg. Med.
Chem. Lett., 2008, 18, 6414.
12 J. Kobayashi, K. Honma, T. Sasaki and M. Tsuda, Chem. Pharm. Bull.,
1995, 43, 403.
13 J. Peng, J. Li and M. T. Hamann, Alkaloids, 2005, 61, 59.
14 M. I. Abou-Shoer, L. A. Shaala, D. T. A. Youssef, J. M. Badr and
A.-A. M. Habib, J. Nat. Prod., 2008, 71, 1464.
15 J. W. Shearman, R. M. Myers, T. M. Beale, J. D. Brenton and S. V. Ley,
Tetrahedron Lett., 2010, 51, 4812.
16 J. A. McMillan, I. C. Paul, Y. M. Goo and K. L. Rinehart Jr,
Tetrahedron Lett., 1981, 22, 39.
17 A. Aiello, E. Fattorusso, M. Menna and M. Pansini, Biochem. Syst.
Ecol., 1995, 23, 377.
18 G. Zhu, F. Yang, R. Balachandran, P. Ho¨o¨k, R. B. Vallee, D. P. Curran
and B. W. Day, J. Med. Chem., 2006, 49, 2063.
19 S. Nishiyama and S. Yamamura, Tetrahedron Lett., 1983, 24, 3351.
20 T. Ogamino, Y. Ishikawa and S. Nishiyama, Heterocycles, 2003, 61,
73.
21 O. Hoshino, M. Masatoshi and Y. Kohei, Tetrahedron, 1996, 52, 14713.
22 T. R. Boehlow, J. J. Harburn and C. D. Spilling, J. Org. Chem., 2001,
66, 3111.
23 M. Murakata, M. Tamura and O. Hoshino, J. Org. Chem., 1997, 62,
4428.
Scheme 3
64 | Org. Biomol. Chem., 2011, 9, 62–65
This journal is
The Royal Society of Chemistry 2011
©