Superoxide detection by cyclic hydroxylamines 429
[2] Singh A. Chemical and biochemical aspects of superoxide
radicals and related species of activated oxygen. Can J Physiol
Pharmacol 1982;60:1330–1345.
[3] Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M.
Modulation of protein kinase activity and gene expression by
reactive oxygen species and their role in vascular physiology
and pathophysiology. Arterioscler Thromb Vasc Biol 2000;
20:2175–2183.
[19] Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J,
Dikalov S, San Martin A, Lyle A, Weber DS, Weiss D, Taylor
WR, Schmidt HH, Owens GK, Lambeth JD, Griendling KK.
Nox1 overexpression potentiates angiotensin II-induced
hypertension and vascular smooth muscle hypertrophy in
transgenic mice. Circulation 2005;112:2668–2676.
[20] Dikalov S, Fink B, Skatchkov M, Bassenge E. Comparison of
glyceryl trinitrate-induced with pentaerythrityl tetranitrate-
induced in vivo formation of superoxide radicals: effect of
vitamin c. Free Radic Biol Med 1999;27:170–176.
[4] Wolin MS, Gupte SA, Oeckler RA. Superoxide in the vascu-
lar system. J Vasc Res 2002;39:191–207.
[5] Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H
oxidase: role in cardiovascular biology and disease. Circ Res
2000;86:494–501.
[6] Dikalov S, Griendling KK, Harrison DG. Measurement of
reactive oxygen species in cardiovascular studies. Hyperten-
sion 2007;49:717–727.
[7] Wolin MS, Ahmad M, Gupte SA. The sources of oxidative
stress in the vessel wall. Kidney Int 2005;67:1659–1661.
[8] Vasquez-Vivar J, Hogg N, Pritchard KA, Jr, Martasek P,
Kalyanaraman B. Superoxide anion formation from lucigenin:
an electron spin resonance spin-trapping study. FEBS Lett
1997;403:127–130.
[9] Tsai P, Ichikawa K, Mailer C, Pou S, Halpern HJ, Robinson
BH, Nielsen R, Rosen GM. Esters of 5-carboxyl-5-methyl-
1-pyrroline n-oxide: a family of spin traps for superoxide.
J Org Chem. 2003;68:7811–7817.
[10] Frejaville C, Karoui H, Tuccio B, Le Moigne F, Culcasi M,
Pietri S, Lauricella R, Tordo P. 5-(diethoxyphosphoryl)-
5-methyl-1-pyrroline n-oxide: a new efficient phosphorylated
nitrone for the in vitro and in vivo spin trapping of oxygen-
centered radicals. J Med Chem 1995;38:258–265.
[11] Dikalov SI, Dikalova AE, Mason RP. Noninvasive diagnostic
tool for inflammation-induced oxidative stress using electron
spin resonance spectroscopy and an extracellular cyclic
hydroxylamine. Arch Biochem Biophys 2002;402:218–226.
[12] Dikalov S, Khramtsov V, Zimmer G. Determination of rate
constants of the reactions of thiols with superoxide radical by
electron paramagnetic resonance: critical remarks on spectro-
photometric approaches. Arch Biochem Biophys 1996;
326:207–218.
[13] Dikalov S, Landmesser U, Harrison DG. Geldanamycin leads
to superoxide formation by enzymatic and non-enzymatic
redox cycling. Implications for studies of Hsp90 and endo-
thelial cell nitric-oxide synthase. J Biol Chem 2002;277:
25480–25485.
[14] Zwicker K, Dikalov S, Matuschka S, Mainka L, Hofmann M,
KhramtsovV, Zimmer G. Oxygen radical generation and enzy-
matic properties of mitochondria in hypoxia/reoxygenation.
Arzneimittelforschung 1998;48:629–636.
[15] Culcasi M, Rockenbauer A, Mercier A, Clement JL, Pietri S.
The line asymmetry of electron spin resonance spectra as a
tool to determine the cis:trans ratio for spin-trapping adducts
of chiral pyrrolines N-oxides: the mechanism of formation of
hydroxylradicaladductsofEMPO,DEPMPO,andDIPPMPO
in the ischemic-reperfused rat liver. Free Radic Biol Med
2006;40:1524–1538.
[16] Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL,
Vasquez-Vivar J, Kalyanaraman B. Detection and characteri-
zation of the product of hydroethidine and intracellular super-
oxide by HPLC and limitations of fluorescence. Proc Natl
Acad Sci USA. 2005;102:5727–5732.
[17] Zielonka J, Zhao H, Xu Y, Kalyanaraman B. Mechanistic
similarities between oxidation of hydroethidine by fremy’s salt
and superoxide: stopped-flow optical and EPR studies. Free
Radic Biol Med 2005;39:853–863.
[18] Fernandes DC, Wosniak J, Jr, Pescatore LA, Bertoline MA,
Liberman M, Laurindo FR, Santos CX. Analysis of dhe-
derived oxidation products by hplc in the assessment of super-
oxide production and nadph oxidase activity in vascular
systems. Am J Physiol Cell Physiol 2007;292:413–422.
[21] Marchesi E, Rota C, FannYC, Chignell CF, Mason RP. Pho-
toreduction of the fluorescent dye 2’-7’-dichlorofluorescein: a
spin trapping and direct electron spin resonance study with
implications for oxidative stress measurements. Free Radic
Biol Med 1999;26:148–161.
[22] Goldstein S, Merenyi G, Russo A, Samuni A. The role of
oxoammonium cation in the sod-mimic activity of cyclic
nitroxides. J Am Chem Soc 2003;125:789–795.
[23] Dikalov S, Skatchkov M, Bassenge E. Spin trapping of super-
oxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyr-
rolidine and 1-hydroxy-2,2,6, 6-tetramethyl-4-oxo-piperidine
and the stability of corresponding nitroxyl radicals towards
biological reductants. Biochem Biophys Res Commun 1997;
231:701–704.
[24] Dikalov S, Skatchkov M, Fink B, Bassenge E. Quantification
of superoxide radicals and peroxynitrite in vascular cells using
oxidation of sterically hindered hydroxylamines and electron
spin resonance. Nitric Oxide 1997;1:423–431.
[25] Kuzkaya N,Weissmann N, Harrison DG, Dikalov S. Interac-
tions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and
thiols: implications for uncoupling endothelial nitric-oxide
synthase. J Biol Chem 2003;278:22546–22554.
[26] Kuzkaya N,Weissmann N, Harrison DG, Dikalov S. Interac-
tions of peroxynitrite with uric acid in the presence of ascor-
bate and thiols: implications for uncoupling endothelial nitric
oxide synthase. Biochem Pharmacol 2005;70:343–354.
[27] Wyche KE, Wang SS, Griendling KK, Dikalov SI, Austin H,
Rao S, Fink B, Harrison DG, Zafari AM. C242t cyba poly-
morphism of the nadph oxidase is associated with reduced
respiratory burst in human neutrophils. Hypertension 2004;
43:1246–1251.
[28] Dikalov S, Grigor’ev IA, Voinov M, Bassenge E. Detection
of superoxide radicals and peroxynitrite by 1-hydroxy-
4-phosphonooxy-2,2,6,6-tetramethylpiperidine: quantifica-
tion of extracellular superoxide radicals formation. Biochem
Biophys Res Commun 1998;248:211–215.
[29] Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T,
Greenamyre JT. Rotenone model of parkinson disease: mul-
tiple brain mitochondria dysfunctions after short term sys-
temic rotenone intoxication. J Biol Chem 2005;280:
42026–42035.
[30] Gongora MC, Qin Z, Laude K, Kim HW, McCann L, Folz JR,
Dikalov S, FukaiT, Harrison DG. Role of extracellular superoxide
dismutase in hypertension. Hypertension 2006;48:473–481.
[31] Hanna IR, Hilenski LL, Dikalova A, Taniyama Y, Dikalov S,
Lyle A, Quinn MT, Lassegue B, Griendling KK. Functional
association of nox1 with p22phox in vascular smooth muscle
cells. Free Radic Biol Med 2004;37:1542–1549.
[32] McNally JS, Davis ME, Giddens DP, Saha A, Hwang J,
Dikalov S, Jo H, Harrison DG. Role of xanthine oxidoreduct-
ase and NAD(P)H oxidase in endothelial superoxide produc-
tion in response to oscillatory shear stress. Am J Physiol Heart
Circ Physiol 2003;285:2290–2297.
[33] Fraticelli A, Serrano CV, Jr, Bochner BS, Capogrossi MC,
Zweier JL. Hydrogen peroxide and superoxide modulate leu-
kocyte adhesion molecule expression and leukocyte endothe-
lial adhesion. Biochim Biophys Acta 1996;1310:251–259.
[34] Sims NR. Rapid isolation of metabolically active mitochon-
dria from rat brain and subregions using percoll density gra-
dient centrifugation. J Neurochem 1990;55:698–707.