temperature range of 55 to ꢁ60 1C, and thereby it is not possible
to quantify the twist-sense bias of the double helix. The associa-
tion constant (Ka) of the monomeric amidine and carboxylic
acid was estimated to be 4.73 ꢂ 105 Mꢁ1 in CHCl3 at 25 1C by
CD titration experiments, while that of (R)-1ꢀ2 was evaluated to
be much higher than 108 Mꢁ1 (Fig. S6 and S7, ESIw).
The fluorescence spectra of (R)-1, 2, and (R)-1ꢀ2 measured
in CDCl3 at 25 1C are shown in Fig. 4b. When excited at
330 nm, both (R)-1 and 2 exhibited a strong fluorescent
emission over the range of 350 to 550 nm, arising from their
conjugated backbones. The duplex, (R)-1ꢀ2, showed a red
shifted fluorescence, which suggested the formation of an
inter-strand excimer.
4 For reviews on helicates, see: (a) E. C. Constable, Tetrahedron,
1992, 48, 10013–10059; (b) J. M. Lehn, Supramolecular Chemistry
Concepts and Perspectives, 1995; (c) C. Piguet, G. Bernardinelli and
G. Hopfgartner, Chem. Rev., 1997, 97, 2005–2062; (d) M. Albrecht,
Chem. Rev., 2001, 101, 3457–3497.
5 For examples of aromatic oligoamide-based double helices, see:
(a) V. Berl, I. Huc, R. G. Khoury, M. J. Krische and J.-M. Lehn,
Nature, 2000, 407, 720–723; (b) C. Dolain, C. Zhan, J.-M. Leger,
L. Daniels and I. Huc, J. Am. Chem. Soc., 2005, 127, 2400–2401;
(c) Q. Gan, C. Bao, B. Kauffmann, A. Grelard, J. Xiang, S. Liu,
I. Huc and H. Jiang, Angew. Chem., Int. Ed., 2008, 47, 1715–1718;
(d) C. Bao, Q. Gan, B. Kauffmann, H. Jiang and I. Huc,
Chem.–Eur.J., 2009, 15, 11530–11536; (e) Y. Ferrand,
A. M. Kendhale, J. Garric, B. Kauffmann and I. Huc, Angew.
Chem., Int. Ed., 2010, 49, 1778–1781.
6 For examples of oligo- and poly(m-phenylene)-based double
helices, see: (a) H. Goto, H. Katagiri, Y. Furusho and
E. Yashima, J. Am. Chem. Soc., 2006, 128, 7176–7178;
(b) H. Goto, Y. Furusho and E. Yashima, J. Am. Chem. Soc.,
2007, 129, 109–112; (c) H. Goto, Y. Furusho and E. Yashima,
J. Am. Chem. Soc., 2007, 129, 9168–9174; (d) H. Goto, Y. Furusho,
K. Miwa and E. Yashima, J. Am. Chem. Soc., 2009, 131, 4710–4719.
7 For examples of amidinium-carboxylate-based double helices, see:
(a) Y. Tanaka, H. Katagiri, Y. Furusho and E. Yashima, Angew.
Chem., Int. Ed., 2005, 44, 3867–3870; (b) M. Ikeda, Y. Tanaka,
T. Hasegawa, Y. Furusho and E. Yashima, J. Am. Chem. Soc.,
2006, 128, 6806–6807; (c) Y. Furusho, Y. Tanaka and E. Yashima,
Org. Lett., 2006, 8, 2583–2586; (d) T. Hasegawa, Y. Furusho,
H. Katagiri and E. Yashima, Angew. Chem., Int. Ed., 2007, 46,
5885–5888; (e) Y. Furusho, Y. Tanaka, T. Maeda, M. Ikeda and
E. Yashima, Chem. Commun., 2007, 3174–3176; (f) T. Maeda,
Y. Furusho, S.-I. Sakurai, J. Kumaki, K. Okoshi and E. Yashima,
J. Am. Chem. Soc., 2008, 130, 7938–7945; (g) H. Ito, Y. Furusho,
T. Hasegawa and E. Yashima, J. Am. Chem. Soc., 2008, 130,
14008–14015; (h) H. Iida, M. Shimoyama, Y. Furusho and
E. Yashima, J. Org. Chem., 2010, 75, 417–423.
In summary, we have designed and synthesized a novel
hetero-stranded double helix with a controlled helix sense that
consists of an optically active dimeric amidine strand and its
complementary achiral dicarboxylic acid strand based on
simple m-diethynylbenzene backbones. Although the present
system has a slightly less stability than the prototype bearing
m-terphenyl backbones, it has a greater advantage than the
m-terphenyl-based one from the viewpoint of the synthetic
accessibility. The present results described in this report will
expand the design possibility of synthetic double helices, due
no longer to the need of cumbersome m-terphenyl skeletons.
This work was supported in part by Grant-in-Aids for
Scientific Research from the Japan Society for the Promotion
of Science (JSPS) and for Scientific Research on Innovative
Areas, ‘‘Emergence in Chemistry’’ (21111508) from the MEXT.
8 J. Li, J. A. Wisner and M. C. Jennings, Org. Lett., 2007, 9,
3267–3269.
9 L. J. Prins, D. N. Reinhoudt and P. Timmerman, Angew. Chem.,
Int. Ed., 2001, 40, 2382–2426.
Notes and references
1 J. D. Watson and F. H. C. Crick, Nature, 1953, 171, 737–738.
2 For reviews on synthetic single helical polymers and oligomers,
see: (a) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173–180;
(b) M. M. Green, J.-W. Park, T. Sato, A. Teramoto, S. Lifson,
R. L. B. Selinger and J. V. Selinger, Angew. Chem., Int. Ed., 1999,
38, 3139–3154; (c) D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes
and J. S. Moore, Chem. Rev., 2001, 101, 3893–4011; (d) T. Nakano
and Y. Okamoto, Chem. Rev., 2001, 101, 4013–4038; (e) J. J. L.
M. Cornelissen, A. E. Rowan, R. J. M. Nolte and N. A. J.
M. Sommerdijk, Chem. Rev., 2001, 101, 4039–4070;
(f) M. Fujiki, Macromol. Rapid Commun., 2001, 22, 539–563;
(g) S. Hecht and I. Huc, Foldamers: Structure, Properties
and Applications, 2007; (h) E. Yashima, K. Maeda and
Y. Furusho, Acc. Chem. Res., 2008, 41, 1166–1180; (i) Z.-T. Li,
J.-L. Hou and C. Li, Acc. Chem. Res., 2008, 41, 1343–1353;
(j) J. G. Rudick and V. Percec, Acc. Chem. Res., 2008, 41,
1641–1652; (k) H.-J. Kim, Y.-B. Lim and M. Lee, J. Polym. Sci.,
Part A: Polym. Chem., 2008, 46, 1925–1935; (l) R. Amemiya and
M. Yamaguchi, Org. Biomol. Chem., 2008, 6, 26–35;
(m) E. Yashima, K. Maeda, H. Iida, Y. Furusho and K. Nagai,
Chem. Rev., 2009, 109, 6102–6211.
10 R. Sanford, K. Yamato, X. Yang, L. Yuan, Y. Han and B. Gong,
Eur. J. Biochem., 2004, 271, 1416–1425.
11 (a) A. Terfort and G. Von Kiedrowski, Angew. Chem., Int. Ed.
Engl., 1992, 31, 654–656; (b) O. Felix, M. W. Hosseini, C. A. De
and J. Fischer, Angew. Chem., Int. Ed. Engl., 1997, 36, 102–104;
(c) A. Kraft, L. Peters and H. R. Powell, Tetrahedron, 2002, 58,
3499–3505; (d) J. Rosenthal, J. M. Hodgkiss, E. R. Young and
D. G. Nocera, J. Am. Chem. Soc., 2006, 128, 10474–10483;
(e) J. Otsuki, Y. Kanazawa, A. Kaito, D. M. S. Islam, Y. Araki
and O. Ito, Chem.–Eur. J., 2008, 14, 3776–3784.
12 J. F. Du, H. Hart and K. K. D. Ng, J. Org. Chem., 1986, 51,
3162–3165.
13 For examples of supramolecules based on m-diethynylbenzenes,
see: (a) J. C. Nelson, J. G. Saven, J. S. Moore and P. G. Wolynes,
Science, 1997, 277, 1793–1796; (b) X. W. Yang, L. H. Yuan,
K. Yamamoto, A. L. Brown, W. Feng, M. Furukawa,
X. C. Zeng and B. Gong, J. Am. Chem. Soc., 2004, 126,
3148–3162; (c) M. Inouye, M. Waki and H. Abe, J. Am. Chem.
Soc., 2004, 126, 2022–2027; (d) T. Kim, L. Arnt, E. Atkins and
G. N. Tew, Chem. –Eur. J., 2006, 12, 2423–2427.
3 For reviews on synthetic double helical molecules, see: (a) I. Huc,
Eur. J. Org. Chem., 2004, 17–29; (b) Y. Furusho and E. Yashima,
Yuki Gosei Kagaku Kyokaishi, 2007, 65, 1121–1133; (c) Y. Furusho
and E. Yashima, Chem. Rec., 2007, 7, 1–11; (d) D. Haldar and
C. Schmuck, Chem. Soc. Rev., 2009, 38, 363–371; (e) Y. Furusho
and E. Yashima, J. Polym. Sci., Part A: Polym. Chem., 2009, 47,
5195–5207.
14 The iodide 3 was synthesized from the commercially available
2,6-dimethyl-4-methylaniline in 3 steps (see ESIw).
15 R. Chinchilla, C. Najera and P. Sanchez-Agullo, Tetrahedron:
´ ´ ´
Asymmetry, 1994, 5, 1393–1402.
16 M. Uchiyama, H. Ozawa, K. Takuma, Y. Matsumoto,
M. Yonehara, K. Hiroya and T. Sakamoto, Org. Lett., 2006, 8,
5517–5520.
c
8964 Chem. Commun., 2010, 46, 8962–8964
This journal is The Royal Society of Chemistry 2010