pubs.acs.org/joc
acids.3 The specific “aza-substitution” of the β-carbon of a β-
N-Aminoazetidinecarboxylic Acid: Direct Access
to a Small-Ring Hydrazino Acid
amino acid implies an R-hydrazino acid, and oligomers of
these can be perceived as aza-β-peptides. Little work has
been done on such materials, however,4 and the first aza-β-
peptide structures containing 5-membered cyclic R-hydrazi-
no acids (aza-β-prolines) appeared only very recently.5
In keeping with the achievements and developments using
larger rings, cyclobutane β-amino acids (ACBC) (Figure 1)
have now emerged as useful building blocks.6 Oligomers of
cis-ACBC adopt strand-type conformations involving in-
traresidue hydrogen bonds.7 Dipeptides incorporating trans-
ACBC appear to adopt 8-membered hydrogen bond rings,8
while longer oligomers adopt a 12-helix conformation both
in solution and in the solid state.9
ꢀ
Valerie Declerck and David J. Aitken*
ꢁ
ꢀ
Laboratoire de Synthese Organique et Methodologie,
ICMMO (UMR 8182-CNRS), Universiteꢀ Paris-Sud 11,
15 rue Georges Clemenceau, 91405 Orsay cedex, France
Received October 25, 2010
FIGURE 1. AAzC, an aza-analogue of ACBC.
A short and efficient synthesis of the previously unknown
N-aminoazetidinecarboxylic acid has been established
using a photochemical [2 þ 2] cycloaddition strategy
starting from 6-azauracil. Chiral derivatization with a
nonracemic oxazolidinone provided access to both en-
antiomers of the title product.
The aza-analogue of ACBC, N-aminoazetidinecarboxylic
acid (AAzC), would appear to be an interesting compound
for continued studies (Figure 1). First, depending on the ring
nitrogen atom’s configuration, AAzC could be analogous to
trans-ACBC, or to cis-ACBC, or perhaps be in a fluxional
mode between these two limits. Furthermore, this additional
backbone nitrogen might behave as a hydrogen bond accep-
tor, serving to stabilize secondary structure in oligomers.4
However, the preparation of AAzC has never been pre-
viously described.
Since the first preparation of hydrazino acids in 1896 by
Traube,10 subsequently developed by Darapsky,11 only a few
methods have been established for their selective synthesis
and the procedures are sometimes difficult to carry out and/
or have a limited scope. A plausible synthetic precursor for a
given hydrazino acid is the corresponding amino acid,
although the transformation is not always straightfor-
ward.4d,5,12 L-Azetidinecarboxylic acid is commercially
available but prohibitively expensive, and the known syn-
thetic routes to this compound involve several steps.13 We
There is a growing interest in cyclic β-amino acids as
building blocks for the preparation of peptidomimetics
which exhibit useful pharmacological activities and for the
construction of molecular architectures displaying strong
self-organization.1 In particular, cyclopentane and cyclohex-
ane β-amino acids have been widely studied, since these
manifolds impart strong structuring propensities within their
oligomers.2 An “aza-replacement” in the peripheral part of
the carbocycle was envisaged by Gellman, who studied
peptides containing pyrrolidine and piperidine β-amino
€ €
€ €
(1) (a) Fulop, F. Chem. Rev. 2001, 101, 2181–2204. (b) Fulop, F.;
ꢀ
Martinek, T. A.; Toth, G. K. Chem. Soc. Rev. 2006, 35, 323–334.
(2) (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.;
Gellman, S. H. J. Am. Chem. Soc. 1996, 118, 13071–13072. (b) Appella,
D. H.; Christianson, L. A.; Klein, D. A.; Richards, M. R.; Powell, D. R.;
Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 7574–7581. (c) Appella, D. H.;
Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. Chem.
ꢀ
ꢀ
€ €
(5) Hetenyi, A.; Toth, G.; Somlai, C.; Vass, E.; Martinek, T. A.; Fulop, F.
Chem.;Eur. J. 2009, 15, 10736–10741.
~
(6) Ortuno, R. M. In Enantioselective Synthesis of β-Amino Acids, 2nd ed.;
Juaristi, J., Soloshonok, V. A., Eds.; Wiley: Hoboken, NJ, 2005; pp 117-137.
ꢀ
´
ꢀ
(7) (a) Rua, F.; Boussert, S.; Parella, T.; Dıez-Perez, I.; Branchadell, V.;
~
Giralt, E.; Ortuno, R. M. Org. Lett. 2007, 9, 3643–3645. (b) Torres, E.;
ꢀ
Soc. 1999, 121, 6206–6212. (d) Martinek, T. A.; Toth, G. K.; Vass, E.;
Hollosi, M.; Fulop, F. Angew. Chem., Int. Ed. 2002, 41, 1718–1721.
ꢀ
€ €
ꢀ
(e) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180.
Gorrea, E.; Burusco, K. K.; Da Silva, E.; Nolis, P.; Rua, F.; Boussert, S.;
ꢀ
Dıez-Perez, I.; Dannenberg, S.; Izquierdo, S.; Giralt, E.; Jaime, C.; Branchadell,
´
(3) (a) Wang, X.; Espinosa, J. F.; Gellman, S. H. J. Am. Chem. Soc. 2000,
122, 4821–4822. (b) Porter, E. A.; Wang, X.; Schmitt, M. A.; Gellman, S. H.
Org. Lett. 2002, 4, 3317–3319. (c) Schinnerl, M.; Murray, J. K.; Langenhan,
J. M.; Gellman, S. H. Eur. J. Org. Chem. 2003, 721–726.
~
V.; Ortuno, R. M. Org. Biomol. Chem. 2010, 8, 564–575.
(8) Torres, E.; Gorrea, E.; Da Silva, E.; Nolis, P.; Branchadell, V.;
~
Ortuno, R. M. Org. Lett. 2009, 11, 2301–2304.
€
(4) (a) Moquet, C.; Salaun, A.; Claudon, P; Le Grel, B.; Potel, M.;
Guichard, G.; Jamart-Gregoire, B.; Le Grel, P. J. Am. Chem. Soc. 2009,
ꢀ
(9) Fernandes, C.; Faure, S.; Pereira, E.; Thery, V.; Declerck, V.; Guillot,
R.; Aitken, D. J. Org. Lett. 2010, 12, 3606–3609.
ꢀ
€
131, 14521–14525. (b) Salaun, A.; Potel, M.; Roisnel, T.; Gall, P.; Le Grel, P.
(10) Traube, W.; Longinescu, G. G. Chem. Ber 1896, 29, 670–675.
(11) Darapsky, A. J. Prakt. Chem. 1936, 296, 268–306.
J. Org. Chem. 2005, 70, 6499–6502. (c) Busnel, O.; Bi, L.; Dali, H.;
Cheguillaume, A.; Chevance, S.; Bondon, A.; Muller, S.; Baudy-Floc’h,
M. J. Org. Chem. 2005, 70, 10701–10708. (d) Lelais, G.; Seebach, D. Helv.
€
Chim. Acta 2003, 86, 4152–4168. (e) Gunther, R.; Hofmann, H.-J. J. Am.
Chem. Soc. 2001, 123, 247–255. (f) Cheguillaume, A.; Salaun, A.; Sinbandhit,
(12) For examples of different strategies, see: (a) De Luca, L.; Falorni,
M.; Giacomelli, G.; Porcheddu, A. Tetrahedron Lett. 1999, 40, 8701–8704.
(b) Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J.-C.; Aubry, A.; Collet, A.
Chem.;Eur. J. 1997, 3, 1691–1709. (c) Viret, J.; Gabard, J.; Collet, A.
Tetrahedron 1987, 43, 891–894. (d) Achiwa, K.; Yamada, S. Tetrahedron
Lett. 1975, 16, 2701–2704.
€
S.; Potel, M.; Gall, P.; Baudy-Floc’h, M.; Le Grel, P. J. Org. Chem. 2001, 66,
4923–4929.
708 J. Org. Chem. 2011, 76, 708–711
Published on Web 12/23/2010
DOI: 10.1021/jo102108t
r
2010 American Chemical Society