6 steps after HPLC purification. The pyrrole group was then
installed ((Br2-Pyrrole)COCCl3, NEt3, DMF; 33%). Use of a
less pure amine for this reaction resulted in significantly less or
no product.
A. L. Zografos, Angew. Chem., Int. Ed., 2004, 43, 2674–2677;
(i) V. B. Birman and X.-T. Jiang, Org. Lett., 2004, 6, 2369–2371;
(j) H. Garrido-Hernandez, M. Nakadai, M. Vimolratana, Q. Li,
T. Doundoulakis and P. G. Harran, Angew. Chem., Int. Ed., 2005,
44, 765–769; (k) I. Kawasaki, N. Sakaguchi, A. Khadeer,
M. Yamashita and S. Ohta, Tetrahedron, 2006, 62, 10182–10192;
(l) M. S. Bultman, J. Ma and D. Y. Gin, Angew. Chem., Int.
Ed., 2008, 47, 6821–6824; (m) J. Hudon, T. A. Cernak,
J. A. Ashenhurst and J. L. Gleason, Angew. Chem., Int. Ed.,
2008, 47, 8885–8888.
4 (a) J. Yamaguchi, I. B. Seiple, I. S. Young, D. P. O’Malley,
M. Maue and P. S. Baran, Angew. Chem., Int. Ed., 2008, 47,
3578–3580; (b) D. P. O’Malley, J. Yamaguchi, I. S. Young,
I. B. Seiple and P. S. Baran, Angew. Chem., Int. Ed., 2008, 47,
3581–3583.
We previously reported a hypervalent iodine(III)-mediated
oxidative bicyclization reaction of dihydro-14-oxo-oroidin to
give dibromophakellstatin in quantitative yield.17 Pleasingly,
use of the same reaction conditions (PhI(OAc)2, Na2CO3,
TFE) to oxidize 19 did afford 20, though inconsistently in
0–5% yield. After extensive optimization, we found PhIO to
be a better oxidant, which gave rise to an unstable product
that slowly converted to the Kinnel–Scheuer intermediate
analog 20 at elevated temperature in DMSO in 20% yield
over two steps. A similar unstable intermediate, which was
suspected to be the monocyclized product, was also observed
5 S. Su, I. B. Seiple, I. S. Young and P. S. Baran, J. Am. Chem. Soc.,
2008, 130, 16490–16491.
6 I. B. Seiple, S. Su, I. S. Young, C. A. Lewis, J. Yamaguchi and
P. S. Baran, Angew. Chem., Int. Ed., 2009, 49, 1095–1098.
7 (a) R. P. Walker, D. J. Faulkner, D. V. Engen and J. Clardy,
J. Am. Chem. Soc., 1981, 103, 6772–6773; (b) P. A. Keifer,
R. E. Schwartz, M. E. S. Koker, J. R. G. Hughes, D. Rittschof
and K. L. Rinehart, J. Org. Chem., 1991, 56, 2965–2975;
(c) R. B. Kinnel, H.-P. Gehrken, R. Swali, G. Skoropowski and
P. J. Scheuer, J. Org. Chem., 1998, 63, 3281–3286; (d) A. Al
Mourabit and P. Potier, Eur. J. Org. Chem., 2001, 237–243;
(e) Ref. 3h; (f) B. H. Northrop, D. P. O’Malley, A. L. Zografos,
P. S. Baran and K. N. Houk, Angew. Chem., Int. Ed., 2006, 45,
by Buchi and co-workers when oxidizing dihydrooroidin with
¨
bromine to form dibromophakellin.15b,18
In summary, as part of our palau’amine synthesis project,
we have synthesized a close analog of the modified Kinnel–
Scheuer intermediate from their biosynthesis proposal. The
stereochemistry of this advanced synthetic intermediate is
consistent with the revised structure of palau’amine. The
biomimetic oxidative ring contraction of the Kinnel–Scheuer
intermediate has previously been realized in model systems in
the laboratory by Romo,3d Lovely,3c Baran19 and us.10 In
particular, the method developed by Romo allowed for the
introduction of the chlorine atom. We are currently examining
the practicality of these methods in converting advanced
synthetic intermediates such as 20 into palau’amine (1).
We thank the NIH (Grant NIGMS R01-GM079554), the
Welch Foundation (I-1596), and UT Southwestern for financial
support, and Prof. Joseph Fox (University of Delaware) for
the suggestion of the use of ethyltrichlorosilane-deactivated
silica gel.
4126–4130; (g) C. Poverlein, G. Breckle and T. Lindel, Org. Lett.,
2006, 8, 819–821.
¨
8 (a) M. S. Buchanan, A. R. Carroll, R. Addepalli, V. M. Avery,
J. N. A. Hooper and R. J. Quinn, J. Org. Chem., 2007, 72,
2309–2317; (b) M. S. Buchanan, A. R. Carroll and R. J. Quinn,
Tetrahedron Lett., 2007, 48, 4573–4574; (c) A. Grube and
M. Kock, Angew. Chem., Int. Ed., 2007, 46, 2320–2324;
¨
(d) H. Kobayashi, K. Kitamura, K. Nagai, Y. Nakao,
N. Fusetani, R. W. M. v. Soest and S. Matsunaga, Tetrahedron
Lett., 2007, 48, 2127–2129.
9 Z. Ma and C. Chen, unpublished results.
10 X. Tan and C. Chen, Angew. Chem., Int. Ed., 2006, 45, 4345–4348.
11 (a) B. B. Snider, Chem. Rev., 1996, 96, 339–363;
(b) G. G. Melikyan, Org. React., 1997, 49, 427–675.
12 (a) S. Lin, Z.-Q. Yang, B. H. B. Kwok, M. Koldobskiy,
C. M. Crews and S. J. Danishefsky, J. Am. Chem. Soc., 2004,
126, 6347–6355; (b) L. Devel, L. Hamon, H. Becker, A. Thellend
and A. Vidal-Cros, Carbohydr. Res., 2003, 338, 1591–1601.
13 While the crude 1H NMR indicated 16 to be the only significant
product, it was not stable to silica gel column chromatography,
leading to its diminished isolated yield. The stereochemistry of 16
was assigned based on the stereochemical studies from ref. 10, and
confirmed by ROESY experiments of subsequent synthetic
intermediates.
Notes and references
y This biosynthetic pathway was a ‘‘better alternative’’ suggested by a
reviewer of ref. 7c.
1 B. Forte, B. Malgesini, C. Piutti, F. Quartieri, A. Scolaro and
G. Papeo, Mar. Drugs, 2009, 7, 705–753.
2 (a) T. Gaich and P. S. Baran, J. Org. Chem., 2010, 75, 4657–4673;
(b) B. Heasley, Eur. J. Org. Chem., 2009, 1477–1489;
(c) H.-D. Arndt and M. Riedrich, Angew. Chem., Int. Ed., 2008,
14 (a) J. Kollonitsch, O. Fuchs and V. Gabor, Nature, 1954, 173,
´
125–126; (b) H. C. Brown, S. Narasimhan and Y. M. Choi, J. Org.
Chem., 1982, 47, 4702–4708.
15 (a) K. J. Wiese, K. Yakushijin and D. A. Horne, Tetrahedron Lett.,
47, 4785–4788; (d) M. Kock, A. Grube, I. B. Seiple and P. S. Baran,
¨
Angew. Chem., Int. Ed., 2007, 46, 6586–6594; (e) D. E. N. Jacquot
and T. Lindel, Curr. Org. Chem., 2005, 9, 1551–1565;
(f) H. Hoffmann and T. Lindel, Synthesis, 2003, 1753–1783.
3 For example: (a) L. E. Overman, B. N. Rogers, J. E. Tellew and
W. C. Trenkle, J. Am. Chem. Soc., 1997, 119, 7159–7160;
(b) J. T. Starr, G. Koch and E. M. Carreira, J. Am. Chem. Soc.,
2000, 122, 8793–8794; (c) C. J. Lovely, H. Du and H. V. R. Dias,
Org. Lett., 2001, 3, 1319–1322; (d) A. S. Dilley and D. Romo, Org.
Lett., 2001, 3, 1535–1538; (e) I. Kawasaki, N. Sakaguchi,
N. Fukushima, N. Fujioka, F. Nikaido, M. Yamashita and
2002, 43, 5135–5136. See also: (b) L. H. Foley and G. Buchi, J. Am.
¨
Chem. Soc., 1982, 104, 1776–1777; (c) Ref. 3g.
16 A. G. Myers, D. W. Kung and B. Zhong, J. Am. Chem. Soc., 2000,
122, 3236–3237.
17 (a) J. Lu, X. Tan and C. Chen, J. Am. Chem. Soc., 2007, 129,
7768–7769. See also: (b) K. S. Feldman and A. P. Skoumbourdis,
Org. Lett., 2005, 7, 929–931; (c) Ref. 15a; (d) Ref. 15b.
18 Besides Buchi’s proposed formation of a C-10/N-14 linkage in
¨
ref. 15b for his dibromophakellin synthesis, it is also possible that a
N-1/C-6 macrocycle, resembling Baran’s palau’amine intermediate
40 in ref. 6, was formed during the oxidation of 19.
S.
Ohta,
Tetrahedron
Lett.,
2002,
43,
(f) S. G. Koenig, S. M. Miller, K. A. Leonard, R. S. Lowe,
4377–4380;
¨
B. C. Chen and D. J. Austin, Org. Lett., 2003, 5, 2203–2206;
(g) P. S. Baran, A. L. Zografos and D. P. O’Malley, J. Am. Chem.
Soc., 2004, 126, 3726–3727; (h) P. S. Baran, D. P. O’Malley and
19 D. P. O’Malley, K. Li, M. Maue, A. L. Zografos and P. S. Baran,
J. Am. Chem. Soc., 2007, 129, 4762–4775.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 427–429 429