Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION Journal Name
single electron transfer (SET) and a dehydrogenation process
to give the product 3a, and the intrinsic reaction coordinate
(IRC) shows the detailed process from the transition state to
the generation of trifluoromethylated product 3a (Fig. 1).19
In conclusion, we have developed a direct, mild easily
operated and highly regioselective method for the C−H
trifluoromethylation and perfluoroalkylation of isoquinolines
and heteroarenes with readily available TMSCnF2n+1 and
hypervalent iodine under metal-free conditions. The
advantage of the transformation is the synthetic simplicity and
diversity. The application of this reaction was illustrated by
preparation of useful medicinal molecules.
DOI: 10.1039/D0CC00963F
6
7
T. Nishida, H. Ida, and M. Kanai, Nat. Commun., 2014, 5,
3387.
D. E. Stephens, G. Chavez, M. Valdes, M. Dovalina, H. D.
Arman and O. V Larionov, Org. Biomol. Chem., 2014, 12
6190.
,
8
9
T. Shirai, M. Kanai and Y. Kuninobu, Org. Lett., 2018, 20, 1593.
(a) M. S. Wiehn, E. V Vinogradova and A. Togni, J. Fluor.
Chem., 2010, 131, 951. (b) Y. Ji, T. Brueckl, R. D. Baxter, Y.
Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran,
Proc. Natl. Acad. Sci., 2011, 108, 14411 LP-14415; (c) Y.
Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A.
Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y.
Ishihara and P. S. Baran, Nature, 2012, 492, 95; (d) C. Alonso,
E. Martínez De Marigorta, G. Rubiales and F. Palacios, Chem.
Rev., 2015, 115, 1847.
This work was supported by the National Science
Foundation of China (21772192 and 21672205) and Western
Light Talent Culture Project of CAS (2017XBZG_XBQNXZ_A1
_006.
10 (a) L. Chu and F.-L. Qing, Acc. Chem. Res., 2014, 47, 1513; (b)
Y.-F. Wang, G. H. Lonca and S. Chiba, Angew. Chem., Int. Ed.,
2014, 53, 1067; (c) X. Wu, L. Chu and F.-L. Qing, Angew.
Chem., Int. Ed., 2013, 52, 2198; (d) V. Krishnamurti, S. B.
Munoz, T. Mathew and G. K. Surya Prakash, Chem. Commun.,
Conflicts of interest
There are no conflicts to declare.
2018, 54, 10574; (e) L. Chu and F.-L. Qing, Org. Lett., 2012, 14
,
2106; (f) Q. Wang, X. Dong, T. Xiao and L. Zhou, Org. Lett.,
2013, 15, 4846; (g) S. Seo, J. B. Taylor and M. F. Greaney,
Chem. Commun., 2013, 49, 6385.
Notes and references
11 (a) X. Zhang, Y. Pan, P. Liang, X. Ma, W. Jiao and H. Shao, Adv.
Synth. Catal., 2019, 361, 5552; (b) P. Liang, Y. Pan, X. Ma, W.
Jiao and H. Shao, Chem. Commun., 2018, 54, 3763; (c) X.
Zhang, Y. Pan, P. Liang, L. Pang, X. Ma, W. Jiao, and H. Shao,
Adv. Synth. Catal., 2018, 360, 3015; (d) X. Ma, Q. Tang, J. Ke,
J. Zhang, C. Wang, H. Wang, Y. Li and H. Shao, Chem.
Commun., 2013, 49, 7085; (e) X. Ma, Q. Tang, J. Ke, X. Yang, J.
Zhang and H. Shao, Org. Lett., 2013, 15, 5170; (f) X. Ma, J.
Zhang, Q. Tang, J. Ke, W. Zou and H. Shao, Chem. Commun.,
2014, 50, 3505.
1
(a) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur,
Chem. Soc. Rev., 2008, 37, 320; (b) J. Wang, M. Sánchez-
Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero,
V. A. Soloshonok and H. Liu, Chem. Rev., 2014, 114, 2432; (c)
P. Jeschke, ChemBioChem, 2004, 5, 570; (d) F. Babudri, G. M.
Farinola, F. Naso and R. Ragni, Chem. Commun., 2007, 1003;
(e) R. Berger, G. Resnati, P. Metrangolo, E. Weber and J.
Hulliger, Chem. Soc. Rev., 2011, 40, 3496.
2
(a) J. M. Paratian, S. Sibille and J. Périchon, J. Chem. Soc.
Chem. Commun., 1992, 53; (b) M. Chen and S. L. Buchwald,
Angew. Chem., Int. Ed., 2013, 52, 11628; (c) H. Morimoto, T.
Tsubogo, N. D. Litvinas and J. F. Hartwig, Angew. Chem., Int.
Ed., 2011, 50, 3793; (d) M. Oishi, H. Kondo and H. Amii, Chem.
Commun., 2009, 1909; (e) M. M. Kremlev, W. Tyrra, D.
12 K. Matcha and A. P. Antonchick, Angew. Chem., Int. Ed., 2013,
52, 2082.
13 (a) H. Tan, H. Li, W. Ji and L. Wang, Angew. Chem., Int. Ed.,
2015, 54, 8374; (b) A. Yoshimura and V. V Zhdankin, Chem.
Rev., 2016, 116, 3328; (c) G.-X. Li, C. A. Morales-Rivera, Y.
Naumann and Y. L. Yagupolskii, J. Fluor. Chem., 2010, 131
,
Wang, P. Liu and G. Chen, Chem. Sci., 2016, 7, 6407; (d) L.
212; (f) Y. Liu, X. Shao, P. Zhang, L. Lu and Q. Shen, Org. Lett.,
2015, 17, 2752; (g) Z. Gonda, S. Kovács, C. Wéber, A. Kotschy
and Z. Novák, Org. Lett., 2014, 16, 4268; (h) A. Lishchynskyi,
P. Novák and V. V Grushin, J. Org. Chem., 2013, 78, 11126.
(a) J.-J. Dai, C. Fang, B. Xiao, J. Yi, J. Xu, Z.-J. Liu, X. Lu, L. Liu
and Y. Fu, J. Am. Chem. Soc., 2013, 135, 8436; (b) G. Danoun,
B. Bayarmagnai, M. F. Grünberg and L. J. Gooßen, Angew.
Chem., Int. Ed., 2013, 52, 7972; (c) A. Lishchynskyi, G. Berthon
and V. V Grushin, Chem. Commun., 2014, 50, 10237.
(a) P. Novák, A. Lishchynskyi and V. V Grushin, Angew. Chem.,
Int. Ed., 2012, 51, 7767; (b) C.-P. Zhang, J. Cai, C.-B. Zhou, X.-
P. Wang, X. Zheng, Y.-C. Gu and J.-C. Xiao, Chem. Commun.,
2011, 47, 9516; (c) Y. Ye and M. S. Sanford, J. Am. Chem. Soc.,
2012, 134, 9034; (d) M. Presset, D. Oehlrich, Rombouts and
G. A. Molander, J. Org. Chem., 2013, 78, 12837; (e) Y. Ye, S. A.
Künzi and M. S. Sanford, Org. Lett., 2012, 14, 4979.
Wang, H. Li and L. Wang, Org. Lett., 2018, 20, 1663; (e) S.
Yang, H. Li, P. Li, J. Yang and L. Wang, Org. Biomol. Chem.,
2020, 18, 715; (f) A. Varvoglis, Tetrahedron, 1997, 53, 1179.
14 J. D. Panarese, D. W. Engers, Y.-J. Wu, J. J. Bronson, J. E.
Macor, A. Chun, A. L. Rodriguez, A. S. Felts, C. R. Hopkins and
C. W. Lindsley, ACS Med. Chem. Lett., 2019, 10, 255.
3
4
15 (a) D. Ji, X. He, Y. Xu, Z. Xu, Y. Bian, W. Liu, Q. Zhu and Y. Xu,
Org. Lett., 2016, 18, 447; (b) X. Liu, G. Mao, J. Qiao, C. Xu, H.
Liu, J. Ma, Z. Sun and W. Chu, Org. Chem. Front., 2019, 6,
1189.
16 The energy profile for the reaction pathway of 1a to 3a was
calculated by DFT. See ESI† for the details.
17 (a) M. M. Konnick, B. G. Hashiguchi, D. Devarajan, N. C. Boaz,
T. B. Gunnoe, J. T. Groves, N. Gunsalus, D. H. Ess and R. A.
Periana, Angew. Chem., Int. Ed., 2014, 53, 10490; (b) C. Zhu, Y.
Liang, X. Hong, H. Sun, W.-Y. Sun, K. N. Houk and Z. Shi, J. Am.
Chem. Soc., 2015, 137, 7564; (c) A. Sreenithya, K. Surya and R.
5
(a) A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8950; (b) Y.-
D. Yang, K. Iwamoto, E. Tokunaga and N. Shibata, Chem.
Commun., 2013, 49, 5510; (c) D. A. Nagib and D. W. C.
MacMillan, Nature, 2011, 480, 224; (d) E. Mejía and A. Togni,
B. Sunoj, WIREs Comput. Mol. Sci., 2017, 7, e1299.
18 In order to explain the selectivity and provide the prediction
profile, the electron localization function (ELF), average Local
ionization energy (ALIE), total electrostatic potential (ESP)
and atomic charge (NPA charge) were evaluated for 1a-1π
and 3a-3π. See ESI† for the details.
ACS Catal., 2012,
2
, 521; (e) J. W. Beatty, J. J. Douglas, K. P.
, 7919; (f)
Cole and C. R. J. Stephenson, Nat. Commun., 2015,
6
D. Wang, G.-J. Deng, S. Chen and H. Gong, Green Chem.,
2016, 18, 5967; (g) N. J. W. Straathof, H. P. L. Gemoets, X.
Wang, J. C. Schouten, V. Hessel and T. Noël, ChemSusChem,
19 The intrinsic reaction coordinate (IRC) clearly shows the
process of single electron transfer and dehydrogenation. See
ESI† for the details.
2014,
7, 1612; (h) T. Kino, Y. Nagase, Y. Ohtsuka, K.
Yamamoto, D. Uraguchi, K. Tokuhisa and T. Yamakawa, J.
4 | J. Name., 2012, 00, 1-3This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins