METALLO-SUPRAMOLECULAR NETWORKS
1315
hydrogen bonding. Additional interactions between the aquo ligands, C O groups of
neighboring molecules, and the disordered perchlorate ions are present, leading to a complex
network of embedded H-bonds that holds all the components together in a compact assembly
(Figure 1).
The reaction of cobalt(II) acetate tetrahydrate with 5a at pH = 5 produces purple
crystals of complex B. The coordination geometry around Co(II) is octahedral (Figure 1),
with the same ligand disposition seen in complex A. The O(3)-H(3B)···O(1)# hydrogen
bond between the aquo ligands and the carboxylic groups of neighboring molecules in the
lattice is still present. The not protonated N(pyridyl) engages a trans-(N,N) disposition,
which is the most energetically stable, and an additional O(3)-H(3A)···N(2)# hydrogen
bond with the other proton on the aquo ligands. In both cases, the presence of an extended
hydrogen bonding network due to the presence of several polar groups in the asymmetric
unit confers a “pseudo-polymeric” nature to these solids, being insoluble in all solvents.
CONCLUSIONS
We have reported a selective and general procedure for the synthesis of 4-
carboxythiazoles, showing that both reaction time and the need of polluting reagents can be
dramatically reduced by MW irradiation during the oxidation step. The coordination ability
of 5a in aqueous environment has been analyzed, leading to new complexes in which
an extensive 3D network is created through hydrogen bonding. Under this perspective,
this study can to be considered as the first step towards the synthesis of thiazole-based
metal-organic frameworks (MOFs) for potential applications in the field of gas storage.
REFERENCES
1. For general texts, see: (a) Joule, J. A.; Mills, K. In Heterocyclic Chemistry, 5th ed.; Wiley &
Sons Ltd.: Chichester, UK, 2010; (b) Metzger, J. V. In Comprehensive Heterocyclic Chemistry;
Pergamon Press: Oxford, UK, 1984.
2. Chen, X. D.; Wu, H. F.; Zhao, X.-H.; Zhao, X. J.; Du, M. Cryst. Growth Des. 2007, 7, 124–131,
and references cited therein.
3. Reginato, G.; Di Credico, B.; Gonsalvi, L.; Peruzzini, M.; Rossin, A. Tetrahedron (in press).
4. Hamada, Y.; Shibata, M.; Sugiura, T.; Kato, S.; Shioiri, T. J. Org. Chem. 1987, 52, 1252–1255.
5. See for instance: (a) Groarke, M.; McKervey, M. A.; Moncrieff, H.; Nieuwenhuyzen, M. Tetra-
hedron Lett. 2000, 41, 1279–1282, and references cited therein; (b) Riego, E.; Hernandez, D.;
Albericio, F.; Alvarez, M. Synthesis 2005, 1907; (c) Souza, M. V. N. J. Sulfur Chem. 2005, 26,
429–449.
6. (a) See for instance:Wagner, B. R.; Schumann, D.; Uwe Linne, U. K.; Marahiel, M. A. J. Am.
Chem. Soc. 2006, 128, 10513–10520; (b) For an example of oxidation with CBrCl3/DBU, see
also: Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165–1168.
7. Bose, D. S.; Idrees, M. Tetrahedron Lett. 2007, 48, 669–672.
8. (a) For an example of oxidation with NiO2 see also:Evans, D. L.; Minster, D. K.; Jordis, U.;
Hecht, S. M.; Mazzu, A. L.; Meyers, A. I. J. Org. Chem. 1979, 44, 497–501; (b) For an example
of oxidation with NiO2, see also:Bock, M.; Dehn, R.; Kirschning, A. Angew. Chem., Int. Ed.
2008, 47, 9134–9137.
9. Sugiyama, H.; Yokokawa, F.; Shioiri, T. Org. Lett. 2000, 2, 2049–2152.
10. Polshettiwar, V.; Varma, R. Acc. Chem. Res. 2008, 41, 629–639.
11. (a) Ellsworth, J. M.; Su, C.-Y.; Khaliq, Z.; Hipp, R. E.; Goforth, A. M.; Smith, M. D.; zur Loye,
H.-C. J. Mol. Struct. 2006, 796, 86–94; (b) Su, C.-Y.; Smith, M. D.; Goforth, A. M.; zur Loye,
H.-C. Inorg. Chem. 2004, 43, 6881–6883.