Communication
ChemComm
8 For key reviews, see: (a) A. Correa, N. Marion, L. Fensterbank,
M. Malacria, S. P. Nolan and L. Cavallo, Angew. Chem., Int. Ed.,
2008, 47, 718; (b) R. K. Shiroodi and V. Gevorgyan, Chem. Soc. Rev.,
2013, 42, 4991; (c) S. Wang, G. Zhang and L. Zhang, Synlett, 2010,
692.
9 (a) J. F. Briones and H. M. L. Davies, J. Am. Chem. Soc., 2013,
135, 13314; (b) G. Xu, C. Zhu, W. Gu, J. Li and J. Sun, Angew. Chem.,
7 in excellent yields and good E : Z selectivities. However, when
a furan is present, a (4+3) dearomative cycloaddition ensues to
provide highly complex 5,7-fused heterocycles 6 in moderate to
good yields as single diastereoisomers. To the best of our knowl-
edge, this is the first example of a dearomatising cycloaddition to
a cyclopropene-derived gold carbene. The facile synthesis of
cyclopropenes of this type (three generally high-yielding steps) is
an additional benefit and provides complementary substitution at
R1 and R2 compared to the previously reported allene (4+3)
cycloaddition reactions. Given that these relatively simple starting
materials can be transformed into highly complex heterocyclic
structures that are precursors to numerous biologically active
natural products, this method could represent a more efficient
route for accessing these molecules. Future work is aimed at
investigating longer tethers and O-linkers in place of the N-linkers,
to expand the range of heterocycles accessible. Enantioselective
variants of the two reactions and further mechanistic studies are
also currently under investigation.
´
´
Int. Ed., 2015, 54, 883; (c) E. Lopez, G. Lonzi and L. A. Lopez,
´
Organometallics, 2014, 33, 5924; (d) G. Lonzi and L. A. Lopez, Adv.
´
Synth. Catal., 2013, 355, 1948; (e) J. Barluenga, G. Lonzi, M. Tomas
´
and L. A. Lopez, Chem. – Eur. J., 2013, 19, 1573; ( f ) V. V. Pagar,
A. M. Jadhav and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 20728;
´
´
´
(g) E. Lopez, G. Lonzi, J. Gonzalez and L. A. Lopez, Chem. Commun.,
2016, 52, 9398; (h) D. Zhang, G. Xu, D. Ding, C. Zhu, J. Li and J. Sun,
´
Angew. Chem., Int. Ed., 2014, 53, 11070; (i) B. Herle, P. M. Holstein
and A. M. Echavarren, ACS Catal., 2017, 7, 3668; ( j) M. Mato,
´
B. Herle and A. M. Echavarren, Org. Lett., 2018, 20, 4341;
(k) M. Mato, C. G. Morales and A. M. Echavarren, ChemCatChem,
2019, 11, 53.
10 In an isolated example, Wang and co-workers reported Au(I)-
catalysed cycloisomerisation reactions of cyclopropenes with
alkenes, alkynes and allenes tethered to a C3-pendant aminomethyl
group: C. Li, Y. Zeng, H. Zhang, J. Feng, Y. Zhang and J. Wang,
Angew. Chem., Int. Ed., 2010, 49, 6413.
11 For examples of alkynes undergoing gold-catalysed reactions with
tethered furans, see: (a) A. S. K. Hashmi, T. M. Frost and J. W. Bats,
J. Am. Chem. Soc., 2000, 122, 11553; (b) A. S. K. Hashmi, J. P. Weyrauch,
The authors acknowledge funding from Australian Research
Council Discovery project: grant number DP180100904, the
University of Wollongong and the DAAD-UA scheme.
´
M. Rudolph and E. Kurpejovic, Angew. Chem., Int. Ed., 2004, 43, 6545;
(c) A. S. K. Hashmi, P. Haufe, C. Schmid, A. R. Nass and W. Frey,
Chem. – Eur. J., 2006, 12, 5376; (d) A. S. K. Hashmi, M. Rudolph, J. Huck,
´
W. Frey, J. W. Bats and M. Hamzic, Angew. Chem., Int. Ed., 2009, 48, 5848;
Conflicts of interest
(e) A. S. K. Hashmi, S. Pankajakshan, M. Rudolph, E. Enns, T. Bander,
F. Rominger and W. Frey, Adv. Synth. Catal., 2009, 351, 2855;
( f ) A. S. K. Hashmi, W. Yang and F. Rominger, Angew. Chem., Int. Ed.,
There are no conflicts to declare.
¨
2011, 50, 5762; (g) A. S. K. Hashmi, T. Haffner, W. Yang, S. Pankajakshan,
¨
S. Schafer, L. Schultes, F. Rominger and W. Frey, Chem. – Eur. J., 2012, 18,
Notes and references
1 For reviews see: (a) F. Miege, C. Meyer and J. Cossy, Beilstein J. Org.
10480–11556; (h) A. S. K. Hashmi, M. Ghanbari, M. Rudolph and
F. Rominger, Chem. – Eur. J., 2012, 18, 8113.
Chem., 2011, 7, 717; (b) G. Ernouf, J.-L. Brayer, C. Meyer and J. Cossy, 12 For examples of allenes undergoing gold-catalysed reactions with
´ ´
tethered furans, see: (a) B. Trillo, F. Lopez, M. Gulıas, L. Castedo and
Beilstein J. Org. Chem., 2019, 15, 333; (c) M. Rubin, M. Rubina and
V. Gevorgyan, Synthesis, 2006, 1221; (d) M. Rubin, M. Rubina and
V. Gevorgyan, Chem. Rev., 2007, 107, 3117; (e) Z.-B. Zhu, Y. Weib and
˜
J. L. Mascarenas, Angew. Chem., Int. Ed., 2008, 47, 951; (b) Y. Li and
M. Dai, Angew. Chem., Int. Ed., 2017, 56, 11624.
´
˜
M. Shi, Chem. Soc. Rev., 2011, 40, 5534; ( f ) F. L. Carter and V. L. 13 (a) I. Alonso, H. Faustino, F. Lopez and J. L. Mascarenas, Angew. Chem.,
´
Int. Ed., 2011, 50, 11496–11500; (b) B. Trillo, F. Lopez, S. Montserrat,
Frampton, Chem. Rev., 1964, 64, 497; (g) A. Archambeau, F. Miege,
C. Meyer and J. Cossy, Acc. Chem. Res., 2015, 48, 1021–1031.
´
˜
G. Ujaque, L. Castedo, A. Lledos and J. L. Mascarenas, Chem. – Eur. J.,
´ ˜ ´
2009, 15, 3336; (c) F. Lopez, J. L. Mascarenas, F. Lopez and J. L.
2 For original research see: (a) J. T. Bauer, M. S. Hadfield and
A.-L. Lee, Chem. Commun., 2008, 6405; (b) Z. B. Zhu and M. Shi,
˜
Mascarenas, Chem. Soc. Rev., 2014, 43, 2904.
Chem. – Eur. J., 2008, 14, 10219; (c) C. Li, Y. Zeng and J. Wang, 14 B. W. Gung, D. T. Craft, L. N. Bailey and K. Kirschbaum, Chem. – Eur. J.,
Tetrahedron Lett., 2009, 50, 2956; (d) M. S. Hadfield, J. T. Bauer, 2010, 16, 639.
P. E. Glen and A.-L. Lee, Org. Biomol. Chem., 2010, 8, 4090; (e) P. L. 15 (a) H.-B. Wang, X.-Y. Wang, L.-P. Liu, G.-W. Qin and T.-G. Kang,
Zhu, Z. Zhang, X. Y. Tang, I. Marek and M. Shi, ChemCatChem, 2015,
7, 595; ( f ) P. L. Zhu, X. Y. Tang and M. Shi, ChemistryOpen, 2016, 5,
33–37; (g) F. F. Mulks, S. Faraji, F. Rominger, A. Dreuw and
Chem. Rev., 2015, 115, 2975; (b) A. Vasas and J. Hohmann, Chem.
Rev., 2014, 114, 8579; (c) S.-G. Liao, H.-D. Chen and J.-M. Yue, J. Am.
Oil Chem. Soc., 2011, 88, 301.
A. S. K. Hashmi, Chem. – Eur. J., 2018, 24, 71; (h) F. F. Mulks, P. W. 16 (a) A. M. Sarotti, Org. Biomol. Chem., 2018, 16, 944; (b) J.-Q. Liu,
Antoni, F. Rominger and A. S. K. Hashmi, Adv. Synth. Catal., 2018,
360, 1810; (i) F. F. Mulks, P. W. Antoni, J. H. Gross, J. Graf, J. F.
Rominger and A. S. K. Hashmi, J. Am. Chem. Soc., 2019, 141, 4687.
Y.-F. Yang, X.-Y. Li, E.-Q. Liu, Z.-R. Li, L. Zhou, Y. Li and M.-H. Qiu,
´
Phytochemistry, 2013, 96, 265; (c) A. Navarro-Vazquez, R. R. Gil and
K. Blinov, J. Nat. Prod., 2018, 81, 203.
3 (a) F. Miege, C. Meyer and J. Cossy, Org. Lett., 2010, 12, 4144; 17 M. F. Roberts and M. Wink, ALKALOIDS: Biochemistry, Ecology, &
(b) F. Miege, C. Meyer and J. Cossy, Chem. – Eur. J., 2012, 18, 7810. Medicinal Applications, Plenum Press, New York, 1998, p. 486.
4 E. Seraya, E. Slack, A. Ariafard, B. F. Yates and C. J. T. Hyland, Org. 18 A. S. K. Hashmi, Angew. Chem., Int. Ed., 2010, 49, 5232.
Lett., 2010, 12, 4768.
19 (a) M. Gruit, D. Michalik, K. Kru¨ger, A. Spannenberg, A. Tillack,
A. Pews-Davtyan and M. Beller, Tetrahedron, 2010, 66, 3341–3352;
(b) M. R. Bhandari, M. Yousufuddin and C. J. Lovely, Org. Lett., 2011,
13, 1382–1385; (c) D. D. Vachhani, M. Galli, J. Jacobs, L. Van
Meervelt and E. V. Van der Eycken, Chem. Commun., 2013, 49,
7171–7173; (d) C. Ferrer and A. M. Echavarren, Angew. Chem., Int.
Ed., 2006, 45, 1105–1109; (e) Y. Lu, X. Du, X. Jia and Y. Liu, Adv.
Synth. Catal., 2009, 351, 1517–1522; ( f ) C. C. J. Loh, J. Badorrek,
G. Raabe and D. Enders, Chem. – Eur. J., 2011, 17, 13409–13414.
5 (a) M. S. Hadfield and A.-L. Lee, Chem. Commun., 2011, 47, 1333;
(b) P. C. Young, M. S. Hadfield, L. Arrowsmith, K. M. Macleod,
R. J. Mudd, J. A. Jordan-Hore and A.-L. Lee, Org. Lett., 2012, 14, 898.
6 (a) G. Seidel, R. Mynott and A. Fu¨rstner, Angew. Chem., Int. Ed., 2009,
48, 2510–2513; (b) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang,
W. A. Goddard III and F. D. Toste, Nat. Chem., 2009, 1, 482.
7 N. A. Rajabi, M. J. Atashgah, R. BabaAhmadi, C. Hyland and
A. Ariafard, J. Org. Chem., 2013, 78, 9553.
13974 | Chem. Commun., 2019, 55, 13971--13974
This journal is ©The Royal Society of Chemistry 2019