Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
9792-9796; (c) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem.
DOI: 10.1039/C8CC02623H
Res. 2012, 45, 911-922; (d) A., I. D.; T., W. M. J.; Yunjung, B.; T., H.
reaction does not require ancillary redox noninnocent ligands
and instead relies on “classical” redox noninnocence through
backbonding into the substrates and products, albeit at the cost
of potentially higher reaction temperatures.
Table 2. Terminal alkyne scope.a
p
-
E.; A., B. T. Angew. Chem., Int. Ed. 2017, 56, 15599-15602.
3. Basuli, F.; Aneetha, H.; Huffman, J. C.; Mindiola, D. J. J. Am.
Chem. Soc. 2005, 127, 17992-17993.
4. (a) Ballmann, J.; Pick, F.; Castro, L.; Fryzuk, M. D.; Maron, L.
Inorg. Chem. 2013, 52, 1685-1687; (b) Munha, R. F.; Zarkesh, R. A.;
Heyduk, A. F. Dalton Trans. 2013, 42, 3751-3766.
5. (a) Zarkesh, R. A.; Ziller, J. W.; Heyduk, A. F. Angew. Chem., Int.
Ed. 2008, 47, 4715-4718; (b) Heyduk, A. F.; Zarkesh, R. A.; Nguyen,
A. I. Inorg. Chem. 2011, 50, 9849-9863; (c) Nguyen, A. I.; Zarkesh, R.
A.; Lacy, D. C.; Thorson, M. K.; Heyduk, A. F. Chem. Sci. 2011, 2, 166-
169.
R1
R1
R1
H
10% py3TiCl2(NtBu)
N
N
N
R2
R2
R2
R1N3
+
2.1
R2
+
+
C6D5Br, 115 o
C
R2
R2
R2
4
5
3
1
2
% Yield 3 – 5
(3 : 4 : 5)
Entry
R1
Alkyne
Ad
1b
nBu
H
65
6. Heins, S. P.; Wolczanski, P. T.; Cundari, T. R.; MacMillan, S. N.
Chem. Sci. 2017.
1
(1.0 : 0.2 : 0)
2e
2f
7. (a) Davis-Gilbert, Z. W.; Wen, X.; Goodpaster, J. D.; Tonks, I. A.
Submitted (b) Chiu, H.-C.; Tonks, I. A. Angew. Chem., Int. Ed, doi:
10.1002/anie.201800595; (c) Davis-Gilbert, Z. W.; Yao, L. J.; Tonks, I.
A. J. Am. Chem. Soc. 2016, 138, 14570-14573; (d) Gilbert, Z. W.;
Hue, R. J.; Tonks, I. A. Nat. Chem. 2016, 8, 63-68.
H
66
2
Ad
(1.0 : 1.0 : 0b)
tol
1a
tBu
H
7
3
4
(1.0 : 0 : 0)
2g
2h
TMS
H
8. Huisgen, R., 1,3-Dipolar cycloaddition chemistry. Wiley, New
York: 1984.
Ad
1b
34
(1.0 : 0 : 0)
9. (a) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952-3015;
(b) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.;
Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 8923-8930.
10. (a) Engel, P. S. Chem. Rev. 1980, 80, 99-150; (b) L'Abbe, G.
Chem. Rev. 1969, 69, 345-363.
11. (a) Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W.
M.; Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924-
6931; (b) Maria Christofi, A.; Garratt, P. J.; Hogarth, G.; Ibbett, A. J.;
Ng, Y.-F.; Steed, J. W. Tetrahedron 2002, 58, 4543-4549; (c) Geng,
W.; Zhang, W.-X.; Hao, W.; Xi, Z. J. Am. Chem. Soc. 2012, 134,
20230-20233.
12. (a) Harman, W. H.; Lichterman, M. F.; Piro, N. A.; Chang, C. J.
Inorg. Chem. 2012, 51, 10037-10042; (b) Mankad, N. P.; Müller, P.;
Peters, J. C. J. Am. Chem. Soc. 2010, 132, 4083-4085; (c) Powers, I.
G.; Andjaba, J. M.; Luo, X.; Mei, J.; Uyeda, C. J. Am. Chem. Soc. 2018,
140, 4110-4118.
13. (a) Ju, Y.; Kumar, D.; Varma, R. S. J. Org. Chem. 2006, 71, 6697-
6700; (b) Kitamura, M.; Koga, T.; Yano, M.; Okauchi, T. Synlett 2012,
23, 1335-1338.
Ad
1b
38
n/a
5c
2i
aConditions : 0.2 mmol 1 (1 equiv.), 0.42 mmol
2
(2.1 equiv.), 10 mol
% py3TiCl2(NtBu), 115 °C, 6 h, 0.5 ml C6D5Br, average of 2 runs
bProduct ratio determined by quantitative GC-FID. c0.21 mmol 2i
.
This protocol allows access to N-alkylpyrrole derivatives, in
complement to previously-reported Ti-catalyzed [2+2+1]
pyrrole syntheses with diazenes, which were limited to N-aryl
pyrroles. There are several examples of highly substituted N-
alkyl pyrroles with important bioactivity, such as atorvastatin.20
These azide reactions also have contrasting mechanistic features
to the diazene reactions: for example, azide reactions can
effectively outcompete alkyne cyclotrimerization, even with
highly reactive terminal alkynes. Furthermore, azide reactions do
not require a dimeric species to undergo reoxidation, changing
the rate dependence of catalyst concentration when compared to
diazene reactions. The mechanistic insight herein provides a
platform for the further development of Ti-catalyzed oxidative
amination reactions into practical methods.
Financial support was provided by the National Institutes of
Health (1R35GM119457) and the Alfred P. Sloan Foundation
(Sloan Fellowship for IAT). Equipment purchases for the NMR
facility were supported from the NIH (S10OD011952) with
matching funds from the University of Minnesota. The authors
declare no competing financial interests.
14. (a) Smolinsky, G. J. Org. Chem. 1961, 26, 4108-4110; (b) Walker,
P.; Waters, W. A. Journal of the Chemical Society (Resumed) 1962,
1632-1638.
15. (a) Burés, J. Angew. Chem., Int. Ed. 2016, 55, 2028-2031; (b)
Burés, J. Angew. Chem., Int. Ed. 2016, 55, 16084-16087.
16. (a) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123,
2923-2924; (b) Pohlki, F.; Doye, S. Angew. Chem., Int. Ed. 2001, 40,
2305-2308; (c) Lorber, C. Coord. Chem. Rev. 2016, 308, 76-96; (d)
Basuli, F.; Wicker, B.; Huffman, J. C.; Mindiola, D. J. J. Organomet.
Chem. 2011, 696, 235-243; (e) Owen, C. T.; Bolton, P. D.; Cowley, A.
R.; Mountford, P. Organometallics 2007, 26, 83-92.
17. Tillack, A.; Jiao, H.; Garcia Castro, I.; Hartung, C. G.; Beller, M.
Chem. Eur. J. 2004, 10, 2409-2420.
18. Heutling, A.; Pohlki, F.; Doye, S. Chem. Eur. J. 2004, 10, 3059-
3071.
19. See, X. Y.; Beaumier, E. P.; Davis-Gilbert, Z. W.; Dunn, P. L.;
Larsen, J. A.; Pearce, A. J.; Wheeler, T. A.; Tonks, I. A.
Organometallics 2017, 36, 1383-1390.
References
1. (a) Fantauzzi, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Macchi, P.;
Casati, N.; Cenini, S. Organometallics 2005, 24, 4710-4713; (b)
Cramer, S. A.; Jenkins, D. M. J. Am. Chem. Soc. 2011, 133, 19342-
19345; (c) King, E. R.; Hennessy, E. T.; Betley, T. A. J. Am. Chem. Soc.
2011, 133, 4917-4923.
20. Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J.
Org. Chem. 2011, 7, 442-495.
2. (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103,
2861-2904; (b) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins