LETTER
Optically Active Trifluoromethyl-Substituted Allylic Amines
2889
O
N
O
N
O
N
10 mol%
[Pd(C3H5)(cod)]BF4/L
dioxane
40 °C, 12 h
Ph
CF3
Ph
CF3
Ph
CF3
(R)-4a (97% ee)
(S)-3a: α-product
(R)-4a: γ-product
+
8% yield
L = (S)-BINAP:
L = (R)-BINAP:
91% yield
(97% ee)
morpholine (2a)
(1.5 equiv)
7% yield
92% yield
(96% ee)
Scheme 4
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164.
O
O
N
O
(f) Leitner, A.; Shekhar, S.; Pouy, M. J.; Hartwig, J. F. J. Am.
Chem. Soc. 2005, 127, 15506. (g) Polet, D.; Alexakis, A.;
Tissot-Croset, K.; Corminboeuf, C.; Ditrich, K. Chem. Eur.
J. 2006, 12, 3596. (h) Weihofen, R.; Tverskoy, O.;
Helmchen, G. Angew. Chem. Int. Ed. 2006, 45, 5546; and
references therein . For [Rh]: (i) Evans, P. A.; Robinson, J.
E.; Nelson, J. D. J. Am. Chem. Soc. 1999, 121, 6761.
(j) Evans, P. A.; Robinson, J. E.; Nelson, J. D. J. Am. Chem.
Soc. 1999, 121, 12214. For [Ru]: (k) Morisaki, Y.; Kondo,
T.; Mitsudo, T. Organometallics 1999, 18, 4742.
10 mol%
[Pd(C3H5)(cod)]BF4/
(S)-BINAP
N
N
dioxane
Ph
CF3
Ph
CF3
Ph
CF3
40 °C, 12 h
rac-4a
(S)-3a: α-product
42% yield
(S)-4a: γ-product
58% yield
+
85% ee
46% ee
morpholine (2a)
(1.5 equiv)
S value: 19
(l) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.;
Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
(m) Matsushima, Y.; Onitsuka, K.; Takahashi, S.
Scheme 5
Organometallics 2004, 23, 3763. (n) Kawatsura, M.; Ata,
F.; Hirakawa, T.; Hayase, S.; Itoh, T. Tetrahedron Lett.
2008, 49, 4873; and references cited therein.
alysts. We also found that the kinetic resolution had oc-
curred during the isomerization step using the chiral
[Pd(C3H5)(cod)]BF4/BINAP catalyst. The studies of the
reactions by other types of amines and the details of the
isomerization step including the kinetic resolution are
now in progress in our laboratory.
(4) Examples of allylic substitutions of fluorinated allyl
substrates: (a) Hanzawa, Y.; Ishizawa, S.; Kobayashi, Y.
Chem. Pharm. Bull. 1988, 36, 4209. (b) Hanzawa, Y.;
Ishizawa, S.; Ito, H.; Kobayashi, Y.; Taguchi, T. J. Chem.
Soc., Chem. Commun. 1990, 394. (c) Fish, P. V.; Reddy, S.
P.; Lee, C. H.; Johnson, W. S. Tetrahedron Lett. 1992, 33,
8001. (d) Konno, T.; Ishihara, T.; Yamanaka, H.
Supporting Information for this article is available online at
Tetrahedron Lett. 2000, 41, 8467. (e) Okano, T.;
Matsubara, H.; Kusukawa, T.; Fujita, M. J. Organomet.
Chem. 2003, 676, 43. (f) Konno, T.; Takehana, T.; Ishihara,
T.; Yamanaka, H. Org. Biomol. Chem. 2004, 2, 93.
(g) Konno, T.; Takehana, T.; Mishima, M.; Ishihara, T.
J. Org. Chem. 2006, 71, 3545. (h) Kawatsura, M.; Wada, S.;
Hayase, S.; Itoh, T. Synlett 2006, 2483.
References and Notes
(1) (a) Tsuji, J. Palladium Reagents and Catalysts: New
Perspectives for the 21st Century; John Wiley and Sons:
Chichester, 2004. (b) Tsuji, J. Transition Metal Reagents
and Catalysts: Innovations in Organic Synthesis; Wiley and
Sons: Chichester, 2000. (c) Trost, B. M.; Lee, C. B. In
Catalytic Asymmetric Synthesis II; Ojima, I., Ed.; Wiley-
VCH: Weinheim, 2000. (d) Pfaltz, A.; Lautens, M. In
Comprehensive Asymmetric Catalysis I–III; Jacobsen, E. N.;
Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999.
(e) Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima,
I., Ed.; Wiley-VCH: Weinheim, 1993.
(2) (a) Jørgensen, K. A. In Modern Amination Methods; Ricci,
A., Ed.; Wiley-VCH: Weinheim, 2000, Chap. 1, 1.
(b) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98,
1689.
(3) Selected examples of transition-metal-catalyzed allylic
aminations of allylic esters: for [Pd] (a) Dubovyk, I.;
Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2007, 129,
14172. (b) Johns, A. M.; Liu, Z.; Hartwig, J. F. Angew.
Chem. Int. Ed. 2007, 46, 7259. (c) Faller, J. W.; Wilt, J. C.
Org. Lett. 2005, 7, 633; and references therein. For [Ir]:
(d) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga,
N. J. Am. Chem. Soc. 2001, 123, 9525. (e) Ohmura, T.;
(5) Konno, T.; Nagata, K.; Ishihara, T.; Yamanaka, H. J. Org.
Chem. 2002, 67, 1768.
(6) Kawatsura, M.; Hirakawa, T.; Tanaka, T.; Ikeda, D.; Hayase,
S.; Itoh, T. Tetrahedron Lett. 2008, 49, 2450.
(7) Examples of net retention mechanism in the palladium-
catalyzed allylic substitutions: (a) Hayashi, T.; Hagihara, T.;
Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1983, 105,
7767. (b) Hayashi, T.; Yamamoto, A.; Hagihara, T. J. Org.
Chem. 1986, 51, 723. (c) Trost, B. M.; Toste, F. D. J. Am.
Chem. Soc. 1999, 121, 4545.
(8) We observed the racemization of allylic amines took place
by palladium catalysts. For example, the ee of (R)-4a
decreased from 88% to 80% by Pd(OAc)2/DPPE at 60 °C for
12 h, and the ee of (S)-3a also decreased from 98% to 13%
by [Pd(C3H5)(cod)]BF4/(S)-BINAP at 100 °C for 12 h.
(9) We also confirmed the reaction with 10 mol% of
[Pd(C3H5)(cod)]BF4/BIPHEP [2,2¢-bis(diphenyl-
phosphino)-1,1¢-biphenyl] gave an a-product with 96%
regioselectivity at 60 °C, but the ee decreased to 66%.
Synlett 2010, No. 19, 2887–2890 © Thieme Stuttgart · New York