372
F. Alonso et al. / Journal of Organometallic Chemistry 696 (2011) 368e372
for 12 h and then the excess of solvent was removed by heating at
90 ꢀC under vacuum in a rotary evaporator. Finally, the catalyst was
dried at 110 ꢀC for 24 h and calcined under a flow of synthetic air at
400 ꢀC for 4 h, with a heating rate of 5 ꢀC/min [20,21].
(%) 398 (Mþ, 12%), 320 (22), 260 (25), 259 (100), 183 (26), 181 (17).
HRMS (EI): m/z calcd. for C28H34Si 398.2430, found 398.2443.
Acknowledgements
The CeO2 support was prepared by the homogeneous precipi-
tation method. An aqueous solution containing Ce(NO3)3$6H2O
(Aldrich, 99%) and urea was gently heated under stirring. Urea
decomposition produced a yellow precipitate that was filtered,
washed with water, dried at 110 ꢀC overnight, and finally calcined at
This work was generously supported by the Spanish Ministerio
de Ciencia e Innovación (MICINN; grant no. CTQ2007-65218, Con-
solider Ingenio 2010-CSD2007-00006) and the Generalitat
Valenciana (GV; PROMETEO/2009/039 and PROMETEO/2009/002).
Y.M. thanks the Vicerrectorado de Investigación, Desarrollo e
Innovación of the University of Alicante for a grant. R.B. acknowl-
edges the University of Alicante, CAM and Union Fenosa for his
grant (UF2007-X9159987F).
450 ꢀC for 2 h. It had a BET surface are of 70 m2 ꢂ1. The Pt/CeO2
g
catalyst was prepared by impregnation of the support with an
acetone solution of [Pt(NH3)4](NO3)2 (Aldrich), which allowed to
load a 1 wt.% Pt. Excess of solvent was removed as described above
and the sample was dried and calcined under the same conditions
as for the Pt/TiO2 catalyst.
References
3.3. General procedure for the catalytic hydrosilylation of alkynes
[1] K. Oshima, in: I. Fleming (Ed.), Science of Synthesis, vol. 4, Georg Thieme
Verlag, Stuttgart, 2002, pp. 713e756.
The alkyne (1.0 mmol) and hydrosilane (1.0 mmol) were added
to a 20 mL reaction tube containing the Pt/TiO2 catalyst (50.0 mg,
0.25 mol% Pt). The mixture was stirred at 70 ꢀC for 1 h and the
reaction course was monitored by TLC and/or gas chromatography
until total conversion of the starting materials. Diethyl ether
(10 mL) was added to the mixture, followed by catalyst filtration
and washing with additional diethyl ether (2 ꢃ 10 mL). The filtrate
solvent was removed in vacuo to give the corresponding vinyl
silanes. The recovered catalyst was dried under vacuum for removal
of any residual solvent before reutilisation. Vinyl silanes in Table 2,
entries 1 [15], 2 [22], 3 [23], 4 [24], 5 [24], 6 [24], 7 [25], 8 [25], 9
[26], 10 [22], 11 [15], 12 [27], 13 [15], and 16 [15], were characterised
by comparison of their physical and spectroscopic data with those
described in the literature. Data for the new compounds follow:
[2] S.E. Denmark, M.H. Ober, Aldrichimica Acta 36 (2003) 75e85.
[3] I. Ojima, Z. Li, J. Zhu (Part 2), in: Z. Rappoport, Y. Apeloig (Eds.), Chemistry of
Organic Silicon Compounds, vol. 2, VCH, Weinheim, 1998, pp. 1687e1792.
[4] B. Marciniec, Silicon Chem. 1 (2002) 155e175.
[5] B.M. Trost, Z.T. Ball, Synthesis (2005) 853e887.
[6] A.K. Roy, Adv. Organomet. Chem. 55 (2008) 1e59.
[7] B. Marciniec, H. Maciejewski, C. Pietraszuk, P. Pawluc, in: B. Marciniec (Ed.),
Hydrosilylation: A Comprehensive Review on Recent Advances, Advances in
Silicon Science Series, vol. 1, Springer, 2009 (Chapter 2).
[8] F. Alonso, I.P. Beletskaya, M. Yus, Chem. Rev. 104 (2004) 3079e3159.
[9] C.J. Herzig, in: N. Auner, J. Weis (Eds.), Organosilicon Chemistry, VCH, Wein-
heim, 1994, pp. 253e260.
[10] For ruthenium catalysis, see for instance: J.L. Vivero-Escota, L.K. Wo, Chem-
tracts 19 (2006) 358e366.
[11] For early transition-metal catalysis, see: F. Bao, K. Kanno, T. Takahashi, Trends
Org. Chem 12 (2008) 1e17.
[12] See, for instance: G. Berthon-Gelloz, I.E. Markó, in: S.P. Nolan (Ed.),
N-Heterocyclic Carbenes in Synthesis, Wiley, Weinheim, 2006, pp. 119e161.
[13] J.A. Anderson, M. Fernández García (Eds.), Supported Metals in Catalysis,
Imperial College Press, London, 2005.
[14] K. Kaneda, K. Ebitani, T. Mizugaki, K. Mori, Bull. Chem. Soc. Jpn. 79 (2006)
981e1016.
[15] M. Chauhan, B.J. Hauck, L.P. Keller, P. Boudjouk, J. Organomet. Chem 645
(2002) 1e13.
[16] R. Jiménez, J.M. Martínez Rosales, J. Cervantes, Can. J. Chem. 81 (2003)
1370e1375.
3.3.1. (E)-Dec-5-en-5-yltriethylsilane (Table 2, entry 14)
Yellow oil, 98% yield, Rf 0.89 (hexane), tr 12.06 min. IR (neat):
2959, 2935, 2874, 1610, 1467, 1418, 1377, 1231, 1006, 713 cmꢂ1. 1H
NMR (300 MHz, CDCl3):
d 0.52e0.64 (m, 6H), 0.86e0.98 (m, 15H),
1.22e1.41 (m, 8H), 2.03e2.17 (m, 4H), 5.68 (t, 1H, J ¼ 6.9 Hz). 13C
NMR (75 MHz, CDCl3):
d
3.8 (3ꢃCH2), 8.0 (3ꢃCH3), 14.6, 14.7
[17] A. Hamze, O. Provot, J.-D. Brion, M. Alami, Synthesis (2007) 2025e2036.
[18] F. Alonso, P. Riente, F. Rodríguez-Reinoso, J. Ruiz-Martínez, A. Sepúlveda-
Escribano, M. Yus, J. Catal. 260 (2008) 113e118.
[19] F. Alonso, P. Riente, F. Rodríguez-Reinoso, J. Ruiz-Martínez, A. Sepúlveda-
Escribano, M. Yus, ChemCatChem 1 (2009) 75e77.
(2ꢃCH3), 23.1, 23.8, 28.1, 30.4, 32.6, 33.1 (6ꢃCH2), 137.8 (C), 142.5
(CH). MS (EI): m/z (%) 254 (Mþ, 2%), 226 (21), 225 (100), 197 (23),
113 (11), 82 (32), 59 (24). HRMS (EI): m/z calcd. for C16H34Si
254.2430, found 254.2416.
[20] A. Huidobro, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J. Catal. 212
(2002) 94e103.
[21] J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso,
J.A. Anderson, J. Catal. 223 (2004) 179e190.
3.3.2. (E)-Dec-5-en-5-yltriphenylsilane (Table 2, entry 15)
[22] H.A. Wei, J.G. Verkade, Organometallics 24 (2005) 2590e2596.
[23] C. Pietraszuk, B. Marciniec, H. Fischer, Organometallics 19 (2000) 913e917.
[24] A. Battace, T. Zair, H. Doucet, M. Santelli, J. Organomet. Chem 690 (2005)
3790e3802.
[25] M.R. Chaulagain, G.M. Mahandru, J. Montgomery, Tetrahedron 62 (2006)
7560e7566.
[26] Y. Seki, K. Takeshita, K. Kawamoto, S. Murai, N. Sonoda, J. Org. Chem. 51 (1986)
3890e3895.
[27] C.S. Kraihanzel, M.L. Losee, J. Organomet. Chem 10 (1967) 427e437.
Yellow oil, 98% yield, Rf 0.66 (hexane), tr 20.06 min IR (neat):
3058, 2948, 2923, 2858, 1610, 1427, 1104, 696 cmꢂ1 1H NMR
.
(300 MHz, CDCl3):
d
0.67, 0.89 (2t, 6H, J ¼ 6.7 Hz), 1.00e1.15 (m, 4H),
1.29e1.42 (m, 4H), 2.15e2.28 (m, 4H), 5.97 (t, 1H, J ¼ 6.9 Hz),
7.23e7.42 (m, 9H), 7.51e7.60 (m, 6H). 13C NMR (75 MHz, CDCl3):
d
13.4, 13.7 (2ꢃCH3), 22.3, 22.6, 28.5, 29.7, 31.4, 31.9 (6ꢃCH2), 127.3,
128.9, 136.1 (15ꢃCH), 134.7, 135.1 (2ꢃC), 147.1 (CHCH2). MS (EI): m/z