hydrogen-bonding interactions to organize functional mole-
cules into desired nanostructures.
This work was partially supported by KAKENHI
(20350061).
Notes and references
1 F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J.
Schenning, Chem. Rev., 2005, 105, 1491.
2 For examples of our recent work on p-electronic nanostructures
using multiple H-bonding interactions, see: (a) S. Yagai,
S. Mahesh, Y. Kikkawa, K. Unoike, T. Karatsu, A. Kitamura
and A. Ajayaghosh, Angew. Chem., Int. Ed., 2008, 47, 4691;
(b) S. Yagai, S. Kubota, H. Saito, K. Unoike, T. Karatsu,
A. Kitamura, A. Ajayaghosh, M. Kanesato and Y. Kikkawa,
J. Am. Chem. Soc., 2009, 131, 5408; (c) S. Yagai, T. Kinoshita,
Y. Kikkawa, T. Karatsu, A. Kitamura, Y. Honsho and S. Seki,
Chem.–Eur. J., 2009, 15, 9320.
3 (a) T. Verbiest, S. Van Elshocht, M. Karuanen, L. Heliemans,
J. Snauwaert, C. Nuckolls, T. J. Katz and A. Persoons, Science,
1998, 282, 913; (b) H. Engelkamp, S. Middelbeek and R. J. M.
Nolte, Science, 1999, 284, 785; (c) T. Kato, T. Matsuoka,
M. Nishii, Y. Kamikawa, K. Kanie, T. Nishimura, E. Yashima
and S. Ujiie, Angew. Chem., Int. Ed., 2004, 43, 1969; (d) J. P. Hill,
W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura,
K. Ito, T. Hashizume, N. Ishii and T. Aida, Science, 2004, 304,
1481; (e) V. K. Praveen, S. S. Babu, C. Vijayakumar, R. Varghese
and A. Ajayaghosh, Bull. Chem. Soc. Jpn., 2008, 81, 1196;
(f) B. W. Messmore, P. A. Sukerkar and S. I. Stupp, J. Am. Chem.
Fig. 3 (a) TEM and (b) AFM height images of nanostructures
formed by 1ꢀBMx (c = 1 ꢁ 10ꢂ4 M) in MCH. Inset in (a) is a
magnified image and arrows indicate the smallest-width fibers.
(c) Magnified AFM height and (d) phase images of a smallest-width
fiber. Inset in (c) shows cross-sectional analysis along the white line in
the simultaneously obtained height images.
Soc., 2005, 127, 7992; (g) A. Lohr, M. Lysetska and F. Wurthner,
¨
Angew. Chem., Int. Ed., 2005, 44, 5071; (h) C. C. Lee, C. Grenier,
E. W. Meijer and A. P. H. J. Schenning, Chem. Soc. Rev., 2009, 38,
671.
4 (a) J. V. Selinger, M. S. Spector and J. M. Schnur, J. Phys.
Chem. B, 2001, 105, 7157; (b) A. Brizard, R. Oda and I. Huc,
Top. Curr. Chem., 2005, 256, 167; (c) T. Shimizu, M. Masuda and
H. Minamikawa, Chem. Rev., 2005, 105, 1401.
5 (a) P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning and
E. W. Meijer, Science, 2006, 313, 80; (b) A. Ajayaghosh,
R. Varghese, S. J. George and C. Vijayakumar, Angew. Chem.,
Int. Ed., 2006, 45, 1141.
6 A. Ajayaghosh, R. Varghese, S. Mahesh and V. K. Praveen,
Angew. Chem., Int. Ed., 2006, 45, 7729.
7 J. Bae, J.-H. Choi, Y.-S. Yoo, N.-K. Oh, B.-S. Kim and M. Lee,
J. Am. Chem. Soc., 2005, 127, 9668.
Fig. 4 (a) CD and (b) LD spectral change of 1ꢀ(S)-BMx (c = 2 ꢁ 10ꢂ5 M)
in MCH upon cooling from 90 to 20 1C using a 1-cm cuvette. Arrows
indicate change upon cooling.
8 (a) A. P. H. J. Schenning, A. F. M. Kilbinger, F. Biscarini,
M. Cavallini, H. J. Cooper, P. J. Derrick, W. J. Feast,
R. Lazzaroni, P. Leclere, L. A. McDonell, E. W. Meijer and
S. C. J. Meskers, J. Am. Chem. Soc., 2002, 124, 1269;
(b) S.-i. Kawano, N. Fujita and S. Shinkai, Chem.–Eur. J., 2005,
11, 4735; (c) E.-K. Schillinger, E. Mena-Osteritz, J. Hentschel,
70 to 30 1C. The zero-crossing point is observed at 380 nm,
which is close to the absorption maximum of this chiral
complex (389 nm, ESIz). Notably, the chiral complex shows
a largely blue-shifted absorption maximum compared to the
achiral complex (412 nm, Fig. 1b), indicating more H-type
p-stacking of OT moieties taking place for the former. Below
25 1C, a strong negative CD signal emerges abruptly, which
might be due to the artifact arising from macroscopic
alignment of large aggregates by convective flow.16,17
Temperature-dependent linear dichroism (LD) measurements
confirm the presence of a LD effect below 25 1C (Fig. 4b).
The absence of the LD effect above 30 1C clearly demonstrates
that the observed bisignate CD signal can be attributed to the
formation of chirally twisted stacks of 1ꢀ(S)-BMx.8
H. G. Borner and P. Bauerle, Adv. Mater., 2009, 21, 1562–1567.
¨
¨
9 A. Ajayaghosh, C. Vijayakumar, R. Varghese and S. J. George,
Angew. Chem., Int. Ed., 2006, 45, 456.
10 G. J. Sanjayan, V. R. Pedireddi and K. N. Ganesh, Org. Lett.,
2000, 2, 2825.
11 A. G. Bielejewska, C. E. Marjo, L. J. Prins, P. Timmerman, F. de
Jong and D. N. Reinhoudt, J. Am. Chem. Soc., 2001, 123,
7518–7533.
12 P. Samori, V. Francke, T. Mangel, K. Mullen and J. P. Rabe,
¨
Opt. Mater., 1998, 9, 390.
13 F. Wessendorf, J.-F. Gnichwitz, G. H. Sarova, K. Hager,
U. Hartnagel, D. M. Guldi and A. Hirsch, J. Am. Chem. Soc.,
2007, 129, 16057.
14 E. Jahnke, N. Severin, P. Kreutzkamp, J. P. Rabe and
H. Frauenrath, Adv. Mater., 2008, 20, 409.
15 M. Zinic, F. Vogtle and F. Fages, Top. Curr. Chem., 2005, 256, 39.
16 (a) A. Tsuda, M. A. Alam, T. Harada, T. Yamaguchi, N. Ishii and
T. Aida, Angew. Chem., Int. Ed., 2007, 46, 8198; (b) M. Wolffs,
S. J. George, Z. Tomovic, S. C. J. Meskers, A. P. H. J. Schenning
and E. W. Meijer, Angew. Chem., Int. Ed., 2007, 46, 8203.
17 SEM visualized elongated fibrous aggregates with width of 200 nm
(see ESIz).
In conclusion, two different types of self-assembled helical
p-nanostructures, i.e., helical and twisted ribbons, have been
rationally constructed upon changing hydrogen-bonding
modes of the building block by the addition of guest. This
study clearly demonstrates the power of complementary
c
456 Chem. Commun., 2011, 47, 454–456
This journal is The Royal Society of Chemistry 2011